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Strawson and Davidson have tried to shake our faith in
the correspondence theory of truth. Professor Sir Peter
Strawson once wrote, “Truth is not a property of symbols;
for it is not a property”.1 But whether truth is a property
is a red herring, for there is no settled general lore of
properties that answers the question.2 On the other hand,
where L is the language of first order elementary number
theory, there is a set of those sentences of L true in its
standard model.3 This set is the extension of the predicate
“is a true sentence of L”.4

There is also a set of mothers. Its members are the
women who bear the parenthood relation to some child. In

1 P.F. Strawson, “Truth”, in Margaret MacDonald (ed.), Philoso-
phy and Analysis, Blackwell, 1954, p. 262.

2 The obvious first shot is comprehension for properties, which
says that every predicate expresses a property. But this misfires for
non-self-possession.

3 Ordinary set theory yields the set of natural numbers. Applied
set theory yields a one-one correspondence between natural numbers
and truths of L. So applied, set theory yields the set of truths of L by
replacement. It would not be easy to avoid this result naturally.

4 Moreover, this set is of degree O(ω) of unsolvability, and so in-
finitely more unsolvable that the set of theorems of first order elemen-
tary number theory. It would be at least awkward to try to state this
enlightening fact were we denied the set of truths of L.
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general different children have different mothers. The cor-
respondence theory of truth says that truths bear a corre-
spondence relation to facts, where in general different facts
correspond to different truths. But on Tarski’s conception,
a sentence of L is true if and only if every (or, equivalently,
some) sequence of natural numbers satisfies it.5 Davidson
observes that if satisfaction were correspondence and facts
were the sets of sequences satisfying a truth, then exactly
one fact would correspond to all truths.6 This upshot flouts
the opinion that in general different facts correspond to
different truths, as in general different children have dif-
ferent mothers. But all and only the mothers stand in a
relation to a unique species, humanity, for they bear its
members. That banality should not shake one’s faith in
motherhood. Nor, we shall argue, need the fact that all
and only the truths of L are satisfied by a unique set, the
set of all sequences of natural numbers, shake one’s faith
in correspondence to fact.

To defend the faith, we must rescue facts. We can do so
by using set theory to read quantificational syntax into the
very world itself. This will eventually yields a sort of propo-
sitions, among which facts will be distinguished through a
version of satisfaction by all sequences. If we then rescue
expression of a proposition by a sentence, correspondence
to fact turns out to be expression of a proposition that is a
fact. All the set theory involved is pretty straight forward,
but the construction gives one another slant on the role of
sequences in truth.

To begin our rescue of facts, let D be any non-empty
set. Call D the domain (and pick an arbitrary member d∗

5 Alfred Tarski, “The Concept of Truth in Formalized Languages”,
in Logic, Semantics, Metamathematics, trans. J.H. Woodger, Claren-
don Press, 1956, pp. 152–278.

6 Donald Davidson, “True to the Facts”, reprinted in Inquiries
into Truth and Interpretation, Clarendon Press, 1984, pp. 37–54.
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of D). As usual, ω is the set of all natural numbers. Let X
be the set of all sequences of members of D, that is, the
set of all functions from ω into D. (Let x∗ be the member
of X whose value is always d∗.) In Tarski’s setting, one
often thinks of a sequence as a simultaneous evaluation of
all the variables of the language for which one is defining
truth, the nth item in the sequence being the value of the
nth variable. But in our setting, there is no language in
view; in that way, our propositions and facts are language-
independent, and our sequences are just rows of members
of the domain.

Let � be a non-empty set of relations on D. We want
� to be non-empty so we will get some propositions and
facts. � can be the set of all relations on D. In that case,
when D is infinite, there will be more relations in � than
predicates in a countable language; and there will be more
propositions and facts than truths in a countable language.
For each R in � there is a unique positive integer p(R),
called the polyadicity of R, such that R is a set of ordered
p(R)-tuples of members of D.

In one scheme, the sentence “Socrates is bald” expresses
the proposition that Socrates is bald, and the sentence is
true (and the proposition, a fact) if and only if Socrates is
bald. One extensional reconstruction of this scheme takes
this proposition as the ordered pair whose first member
is the set of bald things and whose second member is
Socrates, and then counts this proposition as a fact just
in case its second member is an element of its first. To
allow for polyadicity, suppose F is a k-adic predicate and
n1, . . . , nk are names. Suppose the denotations of n1, . . . , nk
in a non-empty domain D are d1, . . . , dk, and that the ex-
tension of F in D is a set S of ordered k-tuples of members
of D. Then the atomic sentence ‘Fn1 , . . .nk ’ expresses the
proposition 〈S, d1, . . . , dk〉, and this is a fact if and only if
〈d1, . . . , dk〉 ∈ S.
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This gives us propositions expressed by atomic sentences
of a language as standardly interpreted model theoretically.
But what about the rest of the senteces of the language?
Suppose the non-atomic sentences are built up using nega-
tion, disjunction and universal quantification. Then what
are the propositions expressed by

Fab ∨ Gbc,
(∀x) Fax?

We might take these sentences as applying the complex
predicates

Fxy ∨ Fyz
(∀x) Fyx

to, respectively, the triple of the denotations of ‘a’, ‘b’,
‘c’, and the denotation of ‘a’. But how are the extensions
of these complex predicates related to that of the simple
predicate F ?

One approach to these questions starts from the set X of
all sequences of members of the domain D, that is, all func-
tions from ω into D. The original model had a non-empty
set � of relations on D, one relation of the appropriate
polyadicity for each primitive predicate of the language in
view. Let R be one of these relations, and suppose R was
motherhood. Quantificational syntax exploits identification
and permutation of variables. For example, even if the ex-
tension of F is a binary relation, the extension of

Fxy ∨ Fyz

should be a ternary relation, and the triples in it should
stand in a certain way to the pairs in the extension of F .
Again we need to know where the quantifier in

(∀x)Fxy
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acts on the extension of F to say how the extension of
this complex predicate stands to that of F . Sequences are
a way of projecting the syntactical utility of variables of
quantification out into the world. Recall that R was moth-
erhood. Let R(X5,X32) be the set of all sequences x in
X such that the 6th term in x is the mother of the 33rd

term in x. (The annoying plus-one comes from starting our
sequences at zero.) At first, R(X5,X32) looks a bit like R
with a huge amount of irrelevance hanging off it. But sup-
pose the extensions of ‘Fy1y2’ and ‘Fy2y3’ are R(X1,X2)
and R(X2,X3). Let ‘∨’ name the union function. Then the
extension of

Fy1y2 ∨ Fy2y3

can be taken to be

R(X1,X2) u R(X2,X3),

that is, the set of all sequences whose second term is mother
of its third or whose third is mother of its fourth, which
is good enough for what we need. Negation names comple-
mentation (with respect to X), and while universal quan-
tification is a bit more complex, it is not too bad. And
we want to eliminate any mention of a language in the
background.

The variables of ordinary quantificational syntax play
several parts, each of which we will cast among the se-
quences. So we have to pay some attention to sequences.
For any R in �, let R(X1, . . . ,Xp(R)) be the set of all se-
quences x in X such that 〈x(1), . . . , x( p(R))〉 is a member
of R. We call R(X1, . . . ,Xp(R)) a sequence-relation, and in
a slightly extended sense we say that its polyadicity is also
p(R). One might think of R(X1, . . . ,Xp(R)) as like writing
an n-adic predicate F as F (x1, . . . , xn) with explicit use of
the first n variables.
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We will want to be able to vary the things here and
there in a sequence. To that end, let i1, . . . , in be natural
numbers and let d1, . . . , dn be members of D. Then for any
sequence x in X, x d1...dn

i1...in
is the sequence y in X such that

y(j) =
{

x(j) if j �∈ {i1, . . . , in}
dk if j = ik

We identify, permute and rewrite the variables of ordinary
quantificational syntax. To see how to reflect such activ-
ities in the world, suppose R(Xi1 , . . . ,Xip) is the set of
all sequences x in X such that 〈x(i1), . . . , x(ip)〉 is in the
p-adic relation R in �. Let 〈k1, . . . , kp〉 be any ordered
p-tuple of natural numbers. Then R(Xk1 , . . . ,Xkp) is the

set of all sequences x in X such that x x(k1)... x(kp)
i1... ip

is in
R(Xi1 , . . . ,Xip). We call it the k1, . . . , kp trade for i1, . . . , ip
of R, and we say that its polyadicity is the number of mem-
bers of {k1, . . . , kp}, which can be less than p. Suppose, for
example, that R is binary. Then R(X1,X1) is an ersatz for
the set of all members d of D that bear R to themselves,
and R(X2,X1) is in effect the converse of R(X1,X2). In
this way, identifications and permutations of variables are
reflected in the world. One reason for rewriting free vari-
ables is so that while the predicates F (x1, x2) and G(x2, x3)
are binary, their conjunction is ternary; trading also reflects
such rewriting.7

We use these devices to give an inductive definition of
the quantificational relations. To start off, any sequence
relation is a quantificational relation. We have four ways
of going on. If Q(Xi1 , . . . ,Xip) is a quantificational re-
lation and 〈k1, . . . , kp〉 is an ordered p-tuple of natural
numbers, then the k1, . . . , kp trade for i1, . . . , ip of Q is

7 Our devices descend via Hilary Putnam from Paul Bernays’ proof
of his class theorem.
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also a quantificational relation. Its polyadicity is the num-
ber of members of {k1, . . . , kp}. Next, if Q(Xi1 , . . . ,Xip)
and S(Xj1 , . . . ,Xjm ) are quantificational relations, then so
is their union; its polyadicity is the number of numbers
among i1, . . . , ip, j1, . . . , jm. Third, if Q(Xi1 , . . . ,Xip) is a
quantificational relation, then so is its complement with re-
spect to X; its polyadicity is that of Q. Finally, if Q(Xi1 , . . . ,
Xip) is a quantificational relation of positive polyadicity and
i is one of i1, . . . , ip, then the set of all sequences x in X
such that for all d in D, xd

i is in Q is also a quantificational
relation. It is called the universal quantification of Q in ith

place, is written (∀Xi) Q(Xi1 , . . . ,Xip), and its polyadicity
is the predecessor of that of Q. This completes the defini-
tion of the quantificational relations.

Let A be a subset of D. Call each member of A an indi-
vidual. (Construe n-ary functions on D as n + 1-ary single
valued relations on D.) We are now ready to define propo-
sitions. If Q(Xi1 , . . . ,Xip) is a quantificational relation of
polyadicity p and t1, . . . , tp are individuals, then

〈Q(Xi1 , . . . ,Xip), t1, . . . , tp〉
is a proposition, the proposition that Q(t1, . . . , tp). The
proposition that Q(t1, . . . , tp) is a fact, namely the fact that
Q(t1, . . . , tp), if and only if for all sequences x in X, xt1...tp

i1...ip
is in Q(Xi1 , . . . ,Xip).

Given a domain D, pure set theory yields from the rela-
tions on D and the members of D as individuals, the totality
of propositions and facts on D. This is a theorem of pure set
theory. So our propositions and facts are just as extensional
as any other sets. But our present construction may be a
bit too extensional. Suppose that R1 = D = R2. Then the
fact that (∀X1)R1(X1) is the fact that (∀X1)R2(X1), since
both are X. Such collapse happens only for facts that are
propositions of the form 〈Q〉, where Q is a quantificational
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relation of polyadicity zero. Still, on our present construc-
tion, the fact that all men are mortal is the fact that all
women are mortal, which might seem excessively exten-
sional since the set of men is different from the set of
women.

But, at the cost of some abstraction, we can reduce this
excess. To illustrate, let f be the function whose value for
any natural number is its square, and let g be the function
whose value for any natural number is its double. Then
f (2) is identical with g(2), while 〈f , 2〉 is different from
〈g, 2〉. On this model, let us prise the functions of their
arguments among the quantificational relations.

First, let us isolate the functions. Let u be the function
whose value for any subsets A and B of X is their union.
Let n be the function whose value for any subset A of X
is X − A. For each i in ω, let qi be the function whose
value for any quantificational relation Q(Xi1 , . . . ,Xip) of
positive polyadicity where i is among i1, . . . , ip is (∀Xi)
Q(Xi1 , . . . ,Xip) (and whose value otherwise is arbitrary,
say {x∗}). For any i1, . . . , ip, k1, . . . , kp, let s i1...ip

k1...kp
be the

function whose value for any quantificational relation
Q(Xi1 , . . . ,Xip) is the k1, . . . , kp trade for i1, . . . , ip of Q
(and whose value otherwise is arbitrary, say {x∗} again).
Call these functions the operations.

We will call the analogues of 〈f , 2〉 relational forms, and
those of f (2), their values. These we will define inductive-
ly, and at the same time we will show that the value of
a relational form is always a quantificational relation. To
start off, any sequence relation is a relational form, and
is its own value, which is thus a quantificational relation.
To go on, suppose that r1, and r2 are relational forms,
that Q1(Xi1 , . . . ,Xip) and Q2(Xj1 , . . . ,Xjm ) are their val-
ues, and that these values are quantificational relations.
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Then 〈s i1... ip
k1... kp

, r1〉, 〈u, r1, r2〉, 〈n, r1〉 and, if Q1 is of positive
polyadicity and i is among i1, . . . , ip, 〈qi, r1〉 are relational
forms. Their values are, respectively, Q1(Xk1 , . . . ,Xkp), the
union of Q1 and Q2, the complement of Q1 with respect
to X, and (∀Xi)Q1(∀Xi1 , . . . ,Xip), which are all quantifi-
cational relations.

This time around we define propositions in terms of re-
lational forms. So, let r be a relational form, let p be the
polyadicity of its value Q(Xi1 , . . . ,Xip), and let a1, . . . , ap
be individuals. Then, and only then, is 〈r, a1, . . . , ap〉 a
proposition, the proposition that Q(a1, . . . , ap). This propo-
sition is a fact, the fact that Q(a1, . . . , ap), if and only if
〈Q(Xi1 , . . . ,Xip), a1, . . . , ap〉 is a fact in the old sense, that
is, for any x in X, x a1... ap

i1... ip
is in Q(Xi1 , . . . ,Xip). Now the

fact that all men are mortal is different from the fact that
all women are mortal, and for the desired reason, namely,
because the set of men is different from the set of women.
Aping part of 1.1 in Wittgenstein’s Tractatus, we might
say that the world is the totality of facts.

Our construction of propositions and facts makes no
mention of language. Still, our propositions are tailored
for expression by sentences. Let � be a language built up
in the usual way from predicates and names by negation,
disjunction and universal quantification.

To interpret � we need a non-empty domain D, a non-
empty set � of relations on D, a subset A of D, and a func-
tion M that assigns predicates in � to relation in � (match-
ing polyadicities) and names in � to elements of A. Using
M , we can read off a unique proposition from each sen-
tence of �. Call this the proposition expressed (under M )
by the sentence. Say that the sentence corresponds (under
M ) to fact if and only if the proposition expressed (un-
der M ) by the sentence is a fact. Then the sentence is a
true sentence of � if and only if it corresponds (under M )
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to fact.8 We might also say that each true sentence of �
corresponds to the fact it expresses.

To illustrate, let � be the language L for elementary
number theory, let ω be the domain, and let M assign the
identity relation I on ω to the predicate “x1 = x2” of L.
X is now the set of all sequences of natural numbers. Let
r be

〈q1, 〈s1 2
1 1, I (X1,X2)〉〉

Then 〈r〉 is the proposition expressed by the sentence
“(∀x1)(x1 = x1)” under M . The value of r is (∀X1)
I (X1,X1), so under M , “(∀x1)(x1 = x1)” expresses the
proposition that (∀X1) I (X1,X1). Then “(∀x1)(x1 = x1)”
is a true sentence of L

if and only if “(∀x1)(x1 = x1)” corresponds to fact
if and only if the proposition expressed by “(∀x1)(x1 =
x1)” is a fact
if and only if the proposition that (∀X1) I (X1,X1) is
a fact
if and only if for all x in X and all d in ω, xd

1 is in
I (X1,X1)
if and only if for all d in ω, d = d.

This example shows how M and set theory yield a T -
sentence for each sentence of L, as Tarski required of ad-
equate definitions of truth.

Some wish to throw away propositions, expression, cor-
respondence, facts and all of truth but T -sentences.9 But
given that names have denotations, variables have a range
and predicates have extensions, it is inevitable that sen-

8 Tarski forestalls the liar paradox by forbidding the predicate “is
a true sentence of �” from being a predicate in �.

9 Paul Horwich, Truth, Blackwell, 1990.
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tences express propositions, some of which are facts.10 Giv-
en sets, our propositions and facts are inevitable, and given
languages too, so are expressions of propositions and cor-
respondence to fact. Sets and languages are here to stay.
An nimbus of fact will always shroud those hunched over
T -sentences.11

Recibido: 9 de enero de 1996

10 Pretend that “snow” names the stuff s snow, and take the set
W of white things as the extension of the predicate “is white”. This
being so, it remains so for those expressions used in the hackneyed
T -sentence

“Snow is white” is true if and only if snow is white,

which thus says that the sentence “Snow is white” bears relations to s,
W and to the proposition that W (s), which is a fact.

11 I am grateful to Dorothy Grover and Peter Hylton for comments
on an earlier draft of this paper.
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RESUMEN

Davidson desalienta el compromiso ontológico con hechos dis-
tintos que correspondan a oraciones verdaderas distintas. Pero,
una vez que se han dado extensiones a los nombres y predica-
dos básicos de un lenguaje construido con funciones veritativas
y cuantificadores, es inevitable un desarrollo conjuntístico que
usando secuencias conduce a hechos distintos que resultan ex-
tensiones de oraciones verdaderas distintas. Como dijo Huxley,
los hechos no dejan de existir porque los ignoremos.

[Traducción: Raúl Orayen]
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