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SUMMARY: In this paper I deal with first order logic and axiomatic systems.
I present the metalogical results that show the property of satisfying Modus
Ponens as a necessary and sufficient condition for the extended completeness
of the system, and to the Deduction Metatheorem as a necessary and sufficient
condition for the extended correctness of the system. Both supposing that the
system satisfies the corresponding restricted properties. These results show
that the choice of that rule of inference and of that metatheorem, for any
particular axiomatic system, are not a matter of personal liking or of practical
convenience, but they play a fundamental role for the extended correctness-
completeness properties of the axiomatic system. As a matter of fact, they can
be considered as structural properties that characterize the fulfilling of the
Extended Correctness and Completeness theorem for the axiomatic system.
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RESUMEN: En este artículo trabajo con la lógica de primer orden y presento
dos resultados metalógicos respecto a sistemas axiomáticos que satisfacen la
propiedad de correctud-completud restringida. El primer resultado relaciona
la propiedad de que el sistema satisfaga Modus Ponens como condición necesa-
ria y suficiente para la completud extendida del sistema. El segundo relaciona
la propiedad de que el sistema satisfaga el Metateorema de la Deducción
como condición necesaria y suficiente para la correctud extendida del sistema.
Estos resultados muestran que la elección de esa regla de inferencia y de ese
metateorema, para un sistema axiomático particular, no son sólo cuestión de
gusto personal o de conveniencia práctica, sino que desempeñan un papel fun-
damental para la correctud-completud extendida del sistema axiomático. De
hecho, pueden considerarse como propiedades estructurales que caracterizan
que el sistema axiomático cumpla la correctud y la completud extendidas.

PALABRAS CLAVE: consecuencia lógica, sistema axiomático, compacidad,
semántica
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1 . Introduction

In what follows I will only work with formal first order lan-
guages with equality. I will deal with the concept of first order
classical deductive logic, particularly with the concept of an ax-
iomatic system of Hilbert type that is founded in the concepts
of axiom, rule of inference and definition of formal derivation.
As comes next I give the definition of what I will understand
by an axiomatic system of Hilbert type.

Definition. An axiomatic system S is given by the following:

a) A finite or infinite decidable1 set ∆, of formulas. The for-
mulas of ∆ are called the axioms of S.

b) A finite set RI of decidable2 rules of inference of S.

c) A definition of formal derivation of a formula α from a set
of formulas Σ, in such a way that the derivation be a finite
list of n formulas α1, . . . ,αn, with n ≥ 1, such that αn = α
and for all i(i = 1, . . . , n), either αi is an axiom of S or αi
is a formula of Σ (αi is a hypothesis of Σ), or αi is obtained
from earlier formulas in the list by virtue of some rule of
inference of the set RI of the rules of inference of S. There
may or may not be restrictions to the application of such a
rule and in case there are some, these must be effectively
decidable. If such a derivation exists, that is denoted by
Σ `S α and is read “α is derivable from Σ in the system S”.

In Section 2 I will show the compactness theorem and some
basic semantic properties that consider only the classical notions
of truth and of logical consequence,3 as well as some basic syn-
tactical properties that only consider the definition of axiomatic

1 For each formula, an effective procedure must be given in order to decide
if the formula is or is not an axiom.

2 For each rule, an effective procedure must be given to decide if a given
formula is or is not a consequence, of other formulas by virtue of that rule.

3 I am referring to Tarski’s definition of truth, which will not be developed
here, but can be read in Mendelson 1987, chapter two. The intuitive idea is
that a sentence ϕ is true with respect to an interpretation (or model) A, if it
is the case that the interpretation of ϕ is a fact in A. [Tarski 1935.]
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system and that are therefore fulfilled by any axiomatic system.
In Section 3 I present the objective of this paper: the metalogi-
cal results mentioned above and their proofs justified only with
the compactness theorem and the basic properties of the earlier
section. Finally, in Section 4 I give some conclusions.

2 . Basic Properties

Semantics relates formal languages with an interpretation for
them. In my case of a first order language with equality, this
interpretation is a structure consisting of a non-empty set called
the universe, together with relations, operations and distin-
guished objects from the set. Interpretations are to be under-
stood in the standard way of model theory.4 A formula ϕ is
true in an interpretation A if it is satisfied with respect to all
sequences (or variable-assignments) in that interpretation.5

Before I continue working with the concept of logical conse-
quence, I consider to make it precise here. Let Σ∪{ϕ} be a set
of formulas, not necessarily sentences, in a first order language
with equality.

Definition. I say that ϕ is a logical consequence of Σ (written
Σ � ϕ) if and only if in every interpretation A every sequence
s (of elements of the universe of A) that satisfies α for every
α ∈ Σ, also satisfies ϕ.6

For example, I have that ∀xP(x) � P(c) but P(x) 6� ∀xP(x)
and that ϕ � ∀xϕ implies � (ϕ→ ∀xϕ), for any formula ϕ, not
necessarily a sentence.

I will use some basic semantic properties7 whose proofs are
elementary and depend only on the definitions of truth and
logical consequence. These are the following:

a) If Γ ⊆ Σ and Γ � ϕ, then Σ � ϕ (Monotony).

b) If Σ � ϕ and for all α in Σ, Γ � α, then Γ � ϕ (Cut).

4 Cf. Enderton 2001, p. 80 or Mendelson 1987, p. 46.
5 Cf. Enderton 2001, p. 87 or Mendelson 1987, p. 48.
6 Cf. Mendelson 1987, p. 52 and Enderton 2001, p. 88.
7 These are also called structural properties of classical deductive logic.
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c) Σ,α � β if and only if Σ � (α→ β).

d) Σ � ϕ if and only if Σ ∪ {¬ϕ} is not satisfiable.

e) Σ,α, (α→ β) � β.

Property c) for Σ empty, establishes the equivalence between
the notion of logical consequence and that of logical validity for
the corresponding implicative formula.8 Property d) is a rewrit-
ing of the definition of logical consequence. If the language
does not have the symbol “→” of material implication, I will
understand that (α→ β) to be an abbreviation for the formula
(¬α∨β) or for some formula that represents the corresponding
truth function.

Some of these semantic properties will be used, from now
on, appealing to any of them only as “semantic properties”.

If the concept of “ϕ is a logical consequence of Γ” was
characterized as “ϕ is true in every interpretation that makes
every formula in Γ true”, this concept is strictly weaker than
the given above in the sense that my concept implies this one
but not conversely. On the other hand, with this concept of
course the corresponding clause c) of section 2 would fail. In
the case that all formulas are sentences, the two concepts are
equivalent. These facts are easily verified.

I will use the compactness theorem for first order languages
with equality, which I consider a fundamental non-elementary
semantic result and I present it in the form I will use it.

Compactness Theorem (Gödel-Malcev). If Σ ∪ {ϕ} is a set of
formulas of a first order language with equality and Σ � ϕ, then
there is a finite subset Γ ⊆ Σ, such that Γ � ϕ.

Notice that the compactness theorem is a purely semantic
assertion; it does not involve deductions at all. It involves only
semantic notions and I have a purely semantic proof for it, on

8 Cf. Mendelson 1987, p. 52 and Enderton 2001, pp. 88, 99.
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the basis of semantic properties. I give an outline of the proof
of an equivalent form:9

I start with the set of formulas Σ such that every finite
subset is satisfiable (call this property “finitely satisfiable”). Two
previous results are proven, the first one consists in getting a
set Γ such that Σ ⊆ Γ and Γ is a maximal finitely satisfiable
set of formulas, to prove this, Zorn Lemma is used. The second
result consists in getting a set Ω such that Σ ⊆ Ω, Ω is closed
under existential “witness”10 and is a finitely satisfiable set of
formulas. Then the two processes are iterated by recursion and
the union of all those sets is a set Σ∗ such that Σ ⊆ Σ∗ and Σ∗

is a maximal closed under witness and finitely satisfiable set of
formulas. Then a model is constructed for Σ∗. That model is
obviously a model for Σ and I have Σ satisfiable.

I show now some basic syntactic properties that refer to ax-
iomatic systems, whose proof is elementary because it depends
only on the very definition of axiomatic system and then they
don’t depend on which axiomatic system S one is dealing with.
These are the following:

a) If Γ ⊆ Σ and Γ `S ϕ, then Σ `S ϕ (Monotony).

b) If Σ `S ϕ and for all α in Σ, Γ `S α, then Γ `S ϕ (Cut).

Note that these two properties are the syntactic counterparts
of the corresponding first two semantic properties presented
above.

Another elementary property is reflexivity; that is, α `S α.
Observe that transitivity, that is:

if α `S β and β `S ϕ, then α `S ϕ

is a particular case of the property of cut with Σ = {β} and
Γ = {α}.

9 Compactness Theorem. If Σ is a set of formulas of a first order language
with equality such that every finite subset of Σ is satisfiable, then Σ is also
satisfiable. Cf. Malitz 1979, pp. 162–165 and Amor 1999, pp. 28–36.

10 That is, if ∃xϕ(x) ∈ Ω then there is a constant c (the existential witness),
such that ϕ(c) ∈ Ω.
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By the simple fact that by definition the derivations are finite,
it follows that the used hypotheses in a derivation constitute a
finite set, although there may be an infinity of unused hypothe-
ses. From here one gets the so-called finiteness lemma for the
derivation, that is fulfilled in any axiomatic system S.

c) Finiteness Lemma. If S is an axiomatic system and Σ ∪ {ϕ}
is a set of formulas, then: Σ `S ϕ if and only if there is a set
Γ ⊆ Σ, Γ finite, such that Γ `S ϕ.

Some of these syntactic properties will be used from now on,
appealing to any of them only as “syntactic properties”.

Another fundamental logical notion of syntactic type is the
notion of consistency of sets of formulas. A set of formulas
Σ is consistent with respect to an axiomatic system S (or s-
consistent) if it is not derived from Σ in the system S, a for-
mula and its negation; that is, it is not possible to derive a
contradiction. Note that this concept is not absolute in general,
but relative to the axiomatic system, which I deal with.11 Nev-
ertheless, it is interesting to note that this is not clarified in
most classical texts.12 For this reason, in general it should be
spoken about s-consistency and not about consistency, unless
the relativity has been clarified and it is obvious to what system
I refer to.

To finish this section I will give two properties that refer
to axiomatic systems. These properties are not fulfilled in all
systems. Actually, the fact that a system satisfies them means
that it has fundamental properties for its adequation with logical
consequence.

The metalogical relation between the logical notions of deriv-
ability of a formula β from a formula α in an axiomatic system

11 If Σ is a set of formulas to which α and ¬α both pertain, then Σ is
inconsistent in an absolute way, because in that case within any system a
contradiction is derived. But it is possible for some set of formulas, to be
consistent with respect to an axiomatic system and inconsistent with respect
to another one. In these cases, consistency of sets of formulas is relative to
the system Amor 2001, pp. 66–67.

12 Cf. Mendelson 1997, p. 72, Enderton 1972, pp. 112 and 128, Man-
zano 1989, p. 115.



A STRUCTURAL CHARACTERIZATION 75

S (that is, α `S β), and that of proving without hypotheses
the formula (α → β) in S (that is, `S (α → β)), turns out to
be very important in classical logic. For that reason, it will be
analyzed with some detail and then I will give some results that
involve it.

First I generalize this relation considering moreover any set
Σ of possible extra hypotheses; that is, I analyze the relation
between Σ,α `S β and Σ `S (α→ β).

It is easy to observe that the metalogical implication:

If Σ `S (α→ β), then Σ,α `S β

is equivalent to the fact that the system has the rule of Modus
Ponens (MP), as an original rule of the system S or as a derived
rule of inference of the system.13 These ideas will be precise
with the following definition and the following lemma.

Definition. Let S be an axiomatic system. I say that S satisfies
Modus Ponens (MP) if and only if for all Γ, α and β, the
following is satisfied:

Γ,α, (α→ β) `S β.

Lemma. Let S be an axiomatic system. Then: S satisfies MP if
and only if for any set of formulas Σ and any formulas α, β: if
Σ �S (a→ β) then Σ,α �S β.

Proof. Let S be an axiomatic system.

⇒) Suppose that S satisfies MP. Let Σ, α, β be any formulas.

(1) Γ,α, (α→ β) `S β supposition: for all Γ, α, β
(2) Σ `S (α→ β) supposition
(3) Σ,α `S (α→ β) syntactic property: monotony
(4) Σ,α, (α→ β) `S β from (1), with Γ = Σ
(5) Σ,α `S β from (3) and (4) by cut

So, from (2)–(5), I have that: Σ `S (α→ β)⇒ Σ,α `S β.

13 If a rule of inference R has the form: α1, . . . ,αn/β; that is, to obtain β
from α1, . . . ,αn, then R is a derived rule in the system S if and only if R is
not an original rule of the set RI of inference rules of S and α1, . . . ,αn `S β.
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⇐) Suppose now: Σ `S (α → β) ⇒ Σ,α `S β, for all Σ, α,
β.

Let Γ, α, β, be any formulas.

(1) Σ `S (α→ β)⇒ Σ,α `S β supposition: for all
Σ, α, β

(2) Γ,α, (α→ β) `S (α→ β) reflexivity and
monotonicity

(3) Γ,α, (α→ β),α `S β (2) and (1) with Σ=
Γ ∪ {α, (α→ β)}

(4) Γ,α, (α→ β) `S β eliminating the repeated α

So, by (4), S satisfies MP. �

The inverse metalogical implication, known as the Deduction
Metatheorem, is a very special property of an axiomatic sys-
tem S. This is because moreover and independently of giving a
mechanism for the simplification of the proofs of formulas hav-
ing form of implications,14 it has a great theoretical importance
because it is related to the extended correctness property of the
system, as I will see in the following section on the metalogical
results.

Observe that the Deduction Metatheorem states that a con-
ditional is derivable from a set of formulas, if its consequent
is derivable from the set of formulas augmented with the an-
tecedent. More precisely:

Deduction Metatheorem (DMT) for S. For any set of formulas
Σ and any formulas α and β, it is fulfilled that:

if Σ,α `S β, then Σ `S (α→ β).

3 . Metalogical Results

To begin this section I make precise what I will understand by
the property of extended correctness and completeness in first
order logic with equality.

14 Because instead of having to derive (α→ β), I can additionally suppose
α as an extra hypothesis and then derive β.
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An axiomatic system S satisfies the extended correctness
property if any formula obtained with a derivation in S from
Σ, is a logical consequence of Σ. Conversely, a system S satis-
fies the extended completeness property if all the logical con-
sequences of Σ can be obtained with the process of derivation
from Σ in S. In both concepts, the restricted version refers to
the particular case in which there are no formulas in Σ; that is,
Σ is empty or there are no hypotheses.

The extended correctness and completeness theorem asserts
the existence of an axiomatic system that satisfies both the
extended correctness property and the extended completeness
property.

With my present characterization of logical consequence of
section 2, there are deductive systems S which satisfy both
extended correctness and extended completeness: Γ � ϕ if and
only if Γ `S ϕ. An example is the system of Enderton.15 These
systems, according to clause c) of section 2, must satisfy that:

if Γ,α `S β then Γ `S (α→ β).
The standard inference rule of Universal Generalization (∀xϕ

follows from ϕ)16 is not a counterexample to the existence of
deductive systems which satisfy extended correctness, but is an
example of a not very good rule because it generates derivations
that are not logical consequences, for example P(x) ` ∀xP(x),
but P(x) 6� ∀xP(x).

In this section I will show two logical relations between logi-
cal properties of the system. The first one is a relation between
the property of satisfying Modus Ponens and the property of
extended completeness; the second one is a relation between
the DMT and the property of extended correctness; both for
systems that satisfy the restricted correctness and completeness
properties. The discovery of these general relations helped us to
find that a direct way of proving the extended correctness and
the extended completeness of a particular system that satisfies
restricted correctness and completeness, had to be by proving

15 Cf. Enderton 2001, pp. 131–141.
16 Cf. Mendelson 1987, p. 56.
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that the system satisfies both Modus Ponens and the Deduction
Metatheorem. I will state next the first result, on the logical
relation between two logical properties of axiomatic systems:
that of satisfying MP and that of satisfying extended complete-
ness. This metalogical relation is expressed with the following
proposition.

Proposition 1. If S is an axiomatic system that satisfies restricted
completeness, then: S satisfies extended completeness if and
only if S satisfies MP.

Proof. Let S be a formal system that satisfies restricted com-
pleteness (in other words, � α⇒`S α).
⇒) Suppose that S satisfies extended completeness (Σ � α⇒

Σ `S α). Let Γ be a set of formulas and α, β formulas. It is
immediate that:

(1) Γ,α, (α→ β) � β semantic property e)
(2) Γ,α, (α→ β) `S β extended completeness of S

So, by (2), S satisfies MP.

⇐) Suppose now that S satisfies MP (Γ,α, (α → β) `S β).
Let Σ be a set of formulas and α a formula, such that:

(1) Σ � α supposition
(2) There is a finite list
γ1, . . . , γn of formulas
of Σ, such that γ1, . . . , γn � α Compactness Theorem
(3) � (γ1 → (γ2 → . . .→
(γn → α)) . . .) semantic property17

(4) `S (γ1 → (γ2 → . . .→
(γn → α)) . . .) restricted completeness

of S
(5) γ1, . . . , γn `S α S satisfy MP and

Lemma n times
(6) Σ `S α syntactic property a) and

{γ1, . . . , γn} ⊆ Σ

So, by (1)–(6), S satisfies extended completeness. �

17Applying the semantic property c), n times.
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Then, given an axiomatic system that satisfies restricted com-
pleteness, a necessary and sufficient condition to satisfy ex-
tended completeness is to satisfy MP.

It follows from Proposition 1 that for an axiomatic system,
to satisfy extended completeness and to satisfy both restricted
completeness and Modus Ponens are equivalent properties.

I observe then, that to satisfy MP is so important that if a
system with restricted completeness satisfies it, that is enough
for satisfying extended completeness. But if a system doesn’t
satisfy it, then although it satisfies restricted correctness and
completeness, it will never satisfy extended completeness. An
example of this is Malitz’s system.18 This is a system that sat-
isfies restricted completeness and correctness and nevertheless it
doesn’t satisfy extended completeness and the reason of that is
that it doesn’t satisfy MP.

The second result is on a metalogical relation between the
DMT and the property of extended correctness and it is stated
with the following proposition.

Proposition 2. If S is an axiomatic system that satisfies re-
stricted correctness and extended completeness, then: S satisfies
extended correctness if and only if S satisfies the DMT.

Proof. Let S be an axiomatic system that satisfies restricted
correctness and extended completeness.
⇒) Suppose that S satisfies extended correctness (Σ `S α⇒

Σ � α). Let Γ be a set of formulas, α and β formulas such that:

(1) Γ,α `S β supposition
(2) Γ,α � β extended correctness
(3) Γ � (α→ β) semantic property c)
(4) There is a finite list γ1, . . . , γn
of formulas of Γ such that
γ1, . . . , γn � (α→ β) Compactness Theorem
(5) γ1, . . . , γn `S (α→ β) extended completeness

in S
(6) Γ `S (α→ β) syntactic property a) and

{γ1, . . . , γn} ⊆ Γ

18 Cf. Malitz 1979, p. 188 and Amor 1999, p. 110.
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So, by (1)–(6), S fulfills the DMT.

⇐) Suppose now that S satisfies the DMT (if Γ,α `S β then
Γ `S (α → β)). Let Σ be a set of formulas and α, a formula
such that:

(1) Σ `S α supposition
(2) There is a finite list γ1, . . . , γn
of formulas of Σ, such that
γ1, . . . , γn `S α Finiteness Lemma19

(3) `S (γ1 →
(γ2 → . . .→ (γn → α)) . . .) DMT n times
(4) � (γ1 →
(γ2 → . . .→ (γn → α)) . . .) restricted correctness of S
(5) γ1, . . . , γn � α semantic property20

(6) Σ � α semantic property a) and
{γ1, . . . , γn} ⊆ Σ

So, by (1)–(6), S fulfills extended correctness. �

Of course, Proposition 2 could be proved by assuming re-
stricted completeness plus MP instead of extended complete-
ness, because these two properties are equivalent as we saw
after Proposition 1.

We can observe then that the DMT is so important that if a
system with restricted correctness satisfies it, that is enough for
satisfying extended correctness, but if a system doesn’t satisfy
it, although it fulfills restricted correctness-completeness and
Modus Ponens, it will never satisfy extended correctness. An
example of this is the system that is obtained from that of
Malitz21 by adding to it MP as a new rule of inference. This is
a system that satisfies extended completeness and restricted cor-
rectness and nevertheless it does not satisfy extended correctness
and the reason is that it does not satisfy the DMT.

I present finally as a corollary of the two main proposi-
tions of this section, a structural characterization of extended

19Syntactic property c).
20Applying the semantic property c), n times.
21 Cf. Malitz 1979, p. 188 and Amor 1999, p. 110.
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correctness-completeness for systems that satisfy the corre-
sponding restricted properties.

Corollary. If S is an axiomatic system that satisfies restricted
correctness-completeness, then: S satisfies extended correctness-
completeness if and only if S satisfies MP and DMT.

4 . Conclusions

In this paper I have given some elementary semantic properties
that are used in various results. I have also given a definition
of axiomatic system and some basic syntactic properties that
are used too in various results. Then I presented the notion
of consistency of a set of formulas, relative to an axiomatic
system and finished explaining the meaning of an axiomat-
ic system to satisfy Modus Ponens and that of a system to
satisfy the Deduction Metatheorem. I presented and proved,
by using the compactness theorem, the metalogical results that
show the property of satisfying Modus Ponens as a necessary
and sufficient condition for the extended completeness of the
system, and to the Deduction Metatheorem as a necessary and
sufficient condition for the extended correctness of the system.
Both supposing that the system satisfies the corresponding re-
stricted properties. These results show how to find a way of
proving the extended correctness and the extended complete-
ness of a particular axiomatic system, if it satisfies the restricted
correctness and completeness. That is, I showed that the sys-
tem had necessarily to satisfy Modus Ponens and the Deduction
Metatheorem.22 Finally these metalogical results show that the
choice of this rule of inference (MP) and of this Metatheorem
(DMT) for a particular axiomatic system are not a matter of
personal liking or of convenience. As a matter of fact they can
be considered as intrinsic structural properties that are essential
in classical logic, and that play a fundamental role in the fulfill-
ing of the Extended Correctness and Completeness theorem of
an axiomatic system.

22 Cf. Amor 2001.
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