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THE LOGIC OF UNCERTAINTY∗
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London University

A good question with which to begin a study of the logic of
uncertainty is this: suppose you have an argument which
you recognize to be valid —you recognize the impossibili-
ty that it have true premisses and a false conclusion; you
think, but are not sure that its premisses are true. How,
if at all, does this constrain what you should think about
the conclusion of the argument? In section 1 I show that
there is an instructive and plausible answer to this ques-
tion, provided we treat uncertainty in terms of probability.
There are two parts to this assumption: first, that it makes
sense to quantify uncertainty; and second, that the quan-
tities obey what I present as the fundamental principle of
probabilistic structure: that the sum of the probabilities of
a set of exclusive and exhaustive possibilities is 1, the value
assigned to a certainty. These two claims are defended in
sections 2 and 3. In section 4 I show that the fundamen-
tal principle is rich in consequences: all the other prin-
ciples of probabilistic structure which do not require the

∗ Although intended as the first chapter of a book, it was suggested
to me that this material is sufficiently self-contained to appear usefully
as an article. It formed part of a course I gave recently at the Insti-
tuto de Investigaciones Filosóficas, Universidad Nacional Autónoma
de México. I thank my colleagues there for much useful criticism. I
thank also the British Academy for the award of a Research Readership
which allowed me to proceed with this work.
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notion of conditional probability1 are shown to be derivable
from it.

1. Off-Premisses Logic

A notice appeared on the board: due to Smith’s illness,
either Dullard or Bright will give this week’s logic lecture.
On his way to the lecture, John meets Bright hurrying in
the opposite direction.

“Not lecturing today?” he asks.
“No —appointment elsewhere— must dash”, says

Bright. John performs a little inference, decides that he
too would be better off elsewhere, and makes for the pub,
where he is greeted by a fellow-student.

“I thought you were a logic fan!”, says Mary.
“I am —it’s logic that brings me here.” He explains.
“But how can you be sure that your premisses are true?”

asks Mary, who, though not a logic fan, has taken other
philosophical studies to heart.

“I can’t be absolutely sure. Notice boards are not in-
fallible. And perhaps Bright was lying, or was about to
remember his promise to lecture. He may even have a
twin brother who teaches down the road. . . . But, in my
judgement, my premisses are very likely to be true. The
argument is valid; so the conclusion is very likely to be
true.”

“Wrong!”, says Mary. “A valid argument can have very
probable premisses, and a conclusion which is very improb-
able, or even certainly false. Haven’t you heard of the Lot-
tery Paradox? We have many premisses —a million, say:
Ticket 1 won’t win; Ticket 2 won’t win; and so on. The
conclusion is that none of the tickets will win. Each pre-

1 This very important notion is not discussed here.
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miss is highly probable, the conclusion is —practically—
certain to be false.2

“This is an extreme example, but it illustrates a general
phenomenon. You admit the notice may be wrong, in which
case your conclusion would be false. And even if the notice
is correct, you admit that your second premiss may be
wrong, in which case, also, your conclusion would be false
—ruling out as unthinkable a double act. Your conclusion,
then, has more chance of being wrong than either premiss.
Validity does not preserve degree of certainty. Logic is
useless for reasoning from the sort of information typically
available to us —almost invariably, uncertain information.”

“But surely a conclusion validly derived from only two
premisses, each close to certain, can’t be much less cer-
tain”, replies John. But his tone of voice, and his ‘surely’,
betray his doubts about how to pursue the matter. Enter
Jane, who is writing a thesis on probability.

“Elementary,” says Jane, when she hears the problem,
“at least if you are prepared to concede that degrees of
certainty should, ideally, obey the rules of probability. Call
the uncertainty of a proposition one minus its probability.
Then we can establish this: the uncertainty of a conclusion
cannot exceed the sum of the uncertainties of the premisses
from which it is validly derived.

“First, if an argument has one premiss and you recognize
it to be valid, you cannot consistently think the conclusion
is less probable —more uncertain— than the premiss.”

2 Another problem of the same structure which Mary could have
mentioned is the Paradox of the Preface: the author announces that
she is sure that her book is not entirely free from falsehood —she
is bound to have made some mistake somewhere. Of each individual
statement, she believes that it is true. Yet she does not believe that
they are all true.
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(She scribbles on the back of an envelope,3 sees frowns,
then draws two concentric circles, sees nods, and proceeds.)

“Second, a many-premiss argument can be reduced to
a single-premiss argument by conjoining the premisses.
Third —this is the interesting bit, which I’ll convince you
of shortly— the uncertainty of A&B cannot exceed the sum
of the uncertainties of A and of B. Fourth, conjunction and
addition being associative, we can generalize,4 obtaining”
(she scribbles again):

u (C) ≤ u (A1& . . .&An) ≤ u (A1) + · · · + u (An), when
A1, . . .An entail C.

She takes a matchbox from her pocket, and two broken
matches.

“I see you don’t like algebra, so here is a model of the
third part of the proof. The matchbox has length 1, the

3 To recognize that A entails C is to give zero probability to (A
and not C): p (A&¬C) = 0; so p (A) = p (A&C). p (C) = p (A&C) +
p (¬A&C) ≥ p (A). (This is explained more fully in section 4. For the
moment, think of a one-premiss valid argument like ‘It’s square, so
it has four sides’; convince yourself that it would be absurd to think
the premiss more likely than the conclusion; and that the example is
typical.)

4 That is, A&(B&C) is the same as (A&B) &C; and (x + y) + z =
x+(y+z); in each case, the brackets are redundant. It follows that if we
have the result for two conjuncts, it can be extended upwards for any
number of conjuncts. In the case of three conjuncts, (i) u (A&B&C) =
u ((A&B)&C) ≤ u (A&B) + u (C). But u (A&B) ≤ u (A) + u (B); so (ii)
u (A&B) + u (C) ≤ u (A) + u (B) + u (C). (i) and (ii) yield the desired
result: u (A&B&C) ≤ u (A) + u (B) + u (C).
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matches lengths 0.9 and 0.8. They are to be put length-
wise in the box. What is the minimum overlap of the two
matches? Well, placed end to end with no overlap, their
length totals 1.7. So to get them in a box of length 1, they
must overlap by a minimum of 0.7. (The maximum over-
lap is 0.8, the length of the shorter match.) Now, let the
lengths of the matches represent the probabilities of two
propositions, A and B, the lengths of the box occupied
by just A, just B, both, and neither, represent respective-
ly the probabilities of A&¬B,¬A&B,A&B and ¬A&¬B.
(These four probabilities must sum to 1: that is the substan-
tive assumption of probabilistic structure.) We now have
a model of our result: given p (A) = 0.9 (u(A) = 0.1);
p (B) = 0.8 (u (B) = 0.2), we have p (A&B) ≥ 0.7 or
u(A&B) ≤ 0.3 = 0.1 + 0.2 = u (A) + u (B).5

“Call John’s premisses A and B. Suppose he thinks each
is at least 99% probable. This commits him to thinking
that A&B is at least 98% probable. But A&B entails his
conclusion C —it’s impossible that (A&B)&¬C. So, given
the values he assigns to his premisses, C must also be at
least 98% probable. A valid argument with a few high-
ly probable premisses does guarantee a high probability

5 The importance of this feature of valid arguments was first rec-
ognized by Ernest Adams. See his ‘Probability and the Logic of Condi-
tionals’ in J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic,
(Amsterdam: North Holland) 1966; and his The Logic of Conditionals
(Dordrecht: Reidel), 1975, chapter 2.
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for the conclusion —though not quite as high as the pre-
misses. Of course, if there are lots of premisses, or a few
but they’re only fairly probable, the ‘conjunctivitis’ gets
serious: the conclusion can inherit the uncertainty of each
premiss. That’s just common sense. Still, a valid argument,
unlike an invalid one, provides a constraint on the fall in
probability; so logic can be usefully applied to uncertain
information.”6

John beams, his faith in the power of reason restored.
But a sceptical frame of mind, that healthy antidote to
faith, soon finds a new locus of doubt:

“But why should I accept that degrees of confidence
should behave as probabilities?” Mary asks. “I don’t dis-
pute that probability theory has many useful applications
—to random sampling, for instance; and to phenomena
like coin-tossing which appear to be random but show sta-
ble long-run proportions. But why should I believe that
degrees of confidence in propositions in general —that
Labour will win the next election, that the world began
with a Big Bang, that this painting was painted by Goya,
and so forth, should obey the laws of probability?”

6 This principle applies to any argument in which it is impossible
that the premisses are true and the conclusion false (and not merely to
formally valid arguments). Suppose you think it’s about 90% likely
that Mary will get a higher mark than John in the test; and about 80%
likely that John will get a higher mark than Sue. You must then think
it is at least 70% likely that Mary will get a higher mark than Sue.
On the other hand, suppose, in a “round robin” tennis competition, in
which everyone plays everyone, you think it is 90% likely that Mary
will beat John, and 80% likely that John will beat Sue; that leaves you
free to think what you like about whether Mary will beat Sue —if you
think that is 0% likely, there is no inconsistency in your beliefs. (For
it is not impossible that Mary beats John, John beats Sue, and Sue
beats Mary.)
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2. Quantifying Uncertainty

2.1. A person can be more or less close to certain that a
proposition is true. We may express this by saying: there
are degrees of belief (or confidence, or certainty). The fact
is of some importance about our capacities for recogniz-
ing truth. Perception can deliver less-than-certain judge-
ments; so can memory, testimony, and inference, from ef-
fect to likely cause, from cause to likely effect. A threefold
classification of a person’s belief-like attitude towards a
proposition —belief, disbelief, neither, ignoring degrees of
certainty— is seriously inadequate. Inadequate for what?
Inadequate to the main purpose served by having beliefs,
and ascribing them to others —that of helping explain and
justify actions, and guiding deliberations about what to do.
The threefold classification —believes that p, disbelieves
that p, neither believes nor disbelieves p (roughly —yes,
no, don’t know) has two drawbacks. The minor drawback
is that the border between the first and third, or the second
and third, category is very unclear. Are one’s ‘beliefs’ (1)
the things one is certain of, (2) the things one takes as at
least close to certain, or (3) the things one judges more
likely than not? How much doubt, if any, is compatible
with believing (or disbelieving) something? Ordinary usage
does not give a clear answer: context, and the importance
of the issue, will play a large part in determining which
propositions a person is willing to endorse, unqualified, as
something she believes. The major difficulty is that, how-
ever we settle the minor one, at least one of the categories
will be far too crude to explain or justify differences in
behaviour, or to guide deliberation about what to do. It
will ignore important differences; and also, it will ignore
important similarities, between cases which fall on oppo-
site sides of these lines. Take option (3): my beliefs are
the things I judge more likely than not. A and B both
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believe that there will not be a storm at sea; keep all other
relevant factors constant; yet A takes out his boat, B does
not take out his boat. Why? Because A is virtually certain
that there will not be a storm, while B thinks it just more
likely than not. The difference does not come out in terms
of what they believe, on this account. C thinks it just less
likely than not. C does not believe that there will be no
storm; yet there is much less relevant difference between
B and C (a believer and a non-believer) than between A
and B (two believers). In assimilating importantly different
cases, and discriminating between unimportantly differ-
ent cases, this way of drawing a line ill serves our purposes.

With options (1) and (2), on the other hand, the ‘neither’
category catches far too much. I need to buy something in
a hurry —stamps, say. Speed is the only relevant consider-
ation. I have a choice of two equidistant shops in opposite
directions. More often than not, one has to wait longer to
be served in shop A. So I go to shop B. I do not reach the
standard of believing that shop B will be quicker, or that it
will not be quicker (though I am more confident than not
that shop B will be quicker). The threefold classification
does not explain my choice of shop. Again, someone who
believes and someone who falls just short of believing may
be more relevantly similar than two who neither believe
nor disbelieve. Again, these lines do not serve us well.

One often reads, in works on practical reason, something
along the following lines:

X has a motivating reason to φ if and only if he desires that
p and believes that φ-ing will bring it about that p.7

This is intended to be compatible with the thought X may
have a much stronger motivating reason not to φ. It has the,

7 See for example Michael Smith, The Moral Problem (Blackwell,
1994), pp. 92–93.
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to my mind, unfortunate consequence that if I want money
and believe that I would get away with stealing some, I
thereby have a motivating reason to steal. But the objection
in the other direction is more decisive. Suppose there is
one known treatment for my disease, which is estimated
to have a 40% success rate (and no ill effects). I do not
believe that taking the treatment will cure me. But, contra
the above thesis, I do have a motivating reason to take it.
Again, we ignore degrees of certainty at our peril.

I have focused on the need for degrees of belief in prac-
tical reasoning. The same could be said about theoretical
reasoning, for instance, concerning the evidence for a scien-
tific conjecture. Different people have different evidence,
or assess the available evidence differently. Any attempt to
sort people into three classes, the believers, the disbeliev-
ers, and the agnostics, will classify in an unhelpful manner:
two people with almost identical opinions may fall on dif-
ferent sides of these lines; and two people with radically
different opinions may fall within one class. The important
question of how uncertain you are, is overlooked.

2.2. Defenders of the threefold classification, opponents of
degrees of belief, might reply that in the intermediate cases
in which I neither believe nor disbelieve, I may neverthe-
less believe (or disbelieve) something else, namely that it
is probable that (e.g.) going to shop B will be quicker,
and this belief (or disbelief), will differentially explain my
action. Rather than extend the range of epistemic attitudes
to a proposition, they extend the range of propositions be-
lieved. Let us call such a person an ‘absolutist’ about belief.

The absolutist owes us an account of the content of
these more complex beliefs, one which makes perspicuous
their role in guiding behaviour. There is, I allow, more
than one interpretation of probability. The degree theorist
claims that one legitimate interpretation of a probability
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judgement is as an expression of a degree of belief in a
proposition, and it is this interpretation which is relevant to
the explanation of behaviour. In denying this, the absolutist
must find another interpretation of ‘Probably p’, which will
also play a role in explaining the behaviour of someone with
beliefs of this form. It won’t do, for example, to interpret
‘probably, going to shop B will be quicker’ as ‘usually going
to shop B is quicker’; for it is possible to believe that while
(fully) believing, or disbelieving, that on this occasion shop
B will be quicker.

Let us allow the absolutist appeal to the notion of objec-
tive probability-chance, as a real feature of the world: one
may believe that the “real” probability of, say, heads on
the next toss of this coin, is, say, 0.5; and, let us concede,
this belief will explain and justify the same behaviour as
the degree-theorist’s supposed belief to degree 0.5 that the
coin will land heads.

But this phenomenon is insufficiently general for the
absolutist’s needs. With the possible exception of a narrow
class of “trivially analytic” propositions which cannot be
understood without being accepted, any proposition can
be the subject of uncertainty; but only some concern the
possible outcomes of chance processes. Even amongst those
which do, some concern the past outcomes of chance pro-
cesses —the possible outcomes have now come about, or
failed to come about (the coin has landed); and our judge-
ments about the truth-value of such propositions need not
proceed via knowledge of the chance they had of being
true. We may have more direct (yet inconclusive) evidence
as to how the coin landed.

The ubiquity of uncertainty generates the following cru-
cial difficulty for the absolutist: whatever interpretation he
gives of propositional contents of the type ‘It is probable
that p’, which may be simply believed, that propositional
content, like any other, can itself be the object of uncer-
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tainty. Real chances, for instance, are the sort of things
one can be, and typically is, uncertain about. Is this state
to be interpreted as belief in a proposition which ascribes
a “real” probability to the proposition “It is probable that
p”? If this can be made sense of, the objection merely iter-
ates: this propositional content, like any other, can itself be
uncertain. The prospects of eliminating degrees of certainty
are dim.8

In addition, the Lottery Paradox and the Paradox of the
Preface are serious obstacles to the absolutist conception of
belief. For the absolutist, this principle seems compelling:
the belief that p and the belief that q may legitimately
generate the belief that p & q. But iteration of this prin-
ciple many times leads to your believing the conjunction
of all statements of the form “Ticket n won’t win”; and
the conjunction of all the statements in the book. The
above principle is harmless if the absolutist interprets belief
as entailing complete certainty. So interpreted, almost all
propositions are such that we neither believe nor disbelieve
them. But if belief does not entail certainty, it is only the
degree theorist who can explain why a single application
of the above principle is approximately true, but repeated
applications allow the conjunction to become less and less
certain relative to the beliefs in the conjuncts: repeated
applications increase uncertainty.

2.3. Now let us turn to the idea that a person’s degree of
belief in a proposition (at a time) can be represented by
a number. At one extreme, if X is completely sure that
A, let us say that bX(A) = 1. At the other extreme, X
may be completely sure that A is not true; then, let us
say, bX(A) = 0. In the middle, X may think A is equally

8 Let me emphasize that I am not objecting to the notion of ob-
jective chance, but merely to the idea that degrees of confidence are
eliminable in favour of it.
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likely to be true or not true, in which case, let us say,
bX(A) = 1/2. Or X may be nearly certain that A, think
A is a little more likely than not, less likely than not, very
unlikely, etc.

Except in particularly amenable special cases, degrees of
belief are usually not very precise. But our ordinary judge-
ments do admit of more than mere ordinal comparisons of
the form: A is more likely than B, which is more likely
than C. We are capable of judging that A is much more
likely than B; B is slightly more probable than C, etc. It is
important that this is so. Consider two people each facing
a problem of the following structure: a course of action
may lead to one of three possible outcomes, A, B or C.
Each judges A to be more probable than B and B more
probable than C. Each judges A to be desirable, B and C
to be undesirable (indeed, assuming for the sake of symme-
try that this makes sense, each places the same positive or
negative values on A, B and C). But the first judges A to
be much more likely than B, B much more likely than C,
while the second has A just a little more likely than B, B
a little more likely than C. It is this difference which may
well explain the first’s performing the action, the second’s
refraining from doing so.

For example, take two situations in which there may be
three outcomes of deciding to take a certain flight: (A)
arriving at one’s destination on time; (B) arriving seriously
delayed; (C) not arriving at all —a crash. Keep the values
and disvalues of the outcomes the same across the two
situations, and also the fact that A is judged more likely
than B, and B more likely than C. But suppose that in
the first, you judge that A is almost certain; and in the
unlikely event that not A, B is much more likely than C.
In the second situation, although the ordering is the same,
you judge A only a little more likely than B, and B only
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a little more likely than C. It is this latter fact that will
explain why you board one plane and not the other.

Thus, our ordinary capacities permit judgements of the
form ‘the difference in probability between A and B is
greater than (less than, roughly equal to) the difference in
probability between B and C’; we do, implicitly, operate
with a rough and ready scale. It is no doubt an idealiza-
tion to represent a person’s degree of belief that A by a
number between 0 and 1, the nearer to 1, the closer to
certain she is that A. Degrees of belief are not usually
that precise. But, as I have tried to show, it is not too
far removed from our actual practice to prevent its being a
useful idealization. We could say that we are modelling hu-
man judgement in terms of the judgements of hypothetical
beings who are like us except that their degrees of belief
are always sharp. And it is a useful idealization, giving us
access to arithmetic —addition, multiplication, etc.— to
exhibit the logical relations between a person’s degrees of
belief. Of course, caution is required in interpreting the
results: interesting results must be robust enough to be
independent of small numerical differences, which may be
features of the idealization without real significance.

We have already seen an example of the use of num-
bers in the result of section 1: if an argument is valid,
the uncertainty of the conclusion cannot exceed the sum
of the uncertainties of the premisses. This yields plausible
qualitative results: for a given valid argument with premiss-
es close to certain, the conclusion will be close to certain
(though perhaps less close than each premiss individually),
provided there are not too many premisses —a large num-
ber of small degrees of uncertainty can transmit a large,
even a maximal degree of uncertainty to the conclusion.
This is just one result. The proof of the pudding will be
in the eating, and we have had just one preliminary taste.
What matters is whether we can develop a good and useful
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theory of reasoning with uncertain beliefs in terms of the
numerical idealization of uncertainty. The situation is not
different in principle from the use of numbers in physics
to represent lengths, temperatures, mass, etc. Our mea-
surements of these are always imprecise; but our practice
of so representing them provides an indisputably useful
model of their behaviour; and this is so independently of
whether we believe that the phenomena themselves must
have precise numerical values.

3. The Partition Principle

3.1. What logical principles govern degrees of belief? Logic
does not tell you what to believe, but rather that some
beliefs rule out others: some combinations of belief are
consistent, other combinations are not. The fundamental
principle governing degrees of belief, I shall argue, is this:
take a set of exclusive and exhaustive possibilities —a set
of propositions such that it is impossible that more than
one of them is true, and necessary that at least one of them
is true. (For simplicity, we restrict ourselves to finite such
sets.) Call such a set a partition. A person’s degrees of
belief in the members of a partition must sum to 1, the
value to be assigned to a certainty. Let us call this the
Partition Principle.

If, in place of ‘a person’s degrees of belief in’, I had said
‘the probability of’, we have what can serve as the fun-
damental principle of probability theory. Accepting that
degrees of belief obey the Partition Principle amounts to
the claim that degrees of belief have the structure of prob-
abilities. All the principles of the logic of probability which
do not involve the concept of conditional probability can
be shown to follow from this principle.

A partition, in the strict sense, is guaranteed to be
such by logic: it is logically impossible that more than
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one member is true, and logically necessary that at least one
member is true. Elementary classical logic yields innumer-
able examples of partitions, those of the form {A,¬A};
{A&B,A&¬B,¬A}, for instance.9 We shall sometimes
use, for illustrative purposes, examples which are not par-
titions in this strict sense —{Heads, Tails} as the possible
outcomes of a toss, the set of propositions of the form
‘Horse i will win’ for the horses, numbered 1 to n, in the
race. It is not logic which guarantees that the coin won’t
continue forever upwards, or the race won’t end in a dead
heat or be called off. These are strictly partitions only rel-
ative to a set of background assumptions.

A dilemma arises about what to say when the logic which
guarantees that something is a partition is extremely diffi-
cult, perhaps yet undiscovered. For example, suppose that
A is logically equivalent to B, but no one has discovered
this abstruse fact. So {A,¬B} is a partition. Are we to be
accused of irrationality in having degrees of belief in A
and ¬B which do not sum to 1? In a sense yes —we have
inconsistent beliefs. But to the extent that we want our
principles of rationality to be within our powers, we do not
want it to be the case that only the logically omniscient can
be rational. I shelve this problem here: all the strict par-
titions with which we will be concerned are guaranteed to
be such by elementary recognizable logical considerations.

For example, the lines of a truth table constitute a par-
tition; and the Partition Principle dictates that one’s dis-

9 Some non-classical logics will deny that these are examples of
partitions. Intuitionist logic denies that A and ¬A are always neces-
sarily exhaustive possibilities; and paraconsistent logic, more radically,
denies that they are always necessarily exclusive possibilities. Note that
neither gives a reason to doubt the Partition Principle, but they dispute
about what are examples of partitions. This is not the place to enter
into such disputes: for the time being, we shall try to steer clear of the
domains in which classical logic is contentious.
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tribution of belief (or probability) over the lines of a truth
table must sum to 1.

A B (i) (ii) (iii) (iv) (v)

T T 1 0.25 0.1 0.3 0.1
T F 0 0.25 0.8 0.4 0.1
F T 0 0.25 0.1 0.2 0.1
F F 0 0.25 0 0.3 0.1

In the above table, columns (i), (ii) and (iii) each represent
legitimate combinations of degrees of belief in the possi-
bilities represented by the four rows; columns (iv) and (v)
represent illegitimate distributions of belief, summing, in
the case of (iv) to more than 1, and in the case of (v) to
less than 1.

Why accept the Partition Principle? It is hard to find
anything more basic in terms of which to argue for it. I
shall first try to present it as intuitively compelling; then
I shall present an argument which I think has some persua-
sive force against the sceptic. In the next section, I show
that it is powerful in generating important and plausible
consequences.

The basic idea behind the principle is this: a set of ex-
haustive alternative possibilities compete for belief. If you
give full belief to one member of such a set, you have none
left over for any of the others. If you distribute your belief
equally over the n members of a partition, you have degree
of belief 1/n for each of them. The Partition Principle is
equivalent to this: for an n-membered partition, the aver-
age probability of a member must be 1/n. The principle
is silent on how you distribute your probabilities between
the n members. But it dictates that if some member gets
more than the average, some other member or members
get less, to compensate. For example, in a three-horse race
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(assuming one and only one horse will win), it would be
irrational to think that each horse was as likely as not to
win.

Suppose someone were to say (as someone once did say
to me) in connection with a problem about a horse race:

“Look, this is a really good horse. So it’s got a very high
chance of winning —and that’s a fact which is just about
it— which has nothing whatsoever to do with the other
horses in the race.”

This is a mistake: a horse’s chance of winning depends
not just on how good it is, but on what the competition
is like. And what goes for horses goes for possibilities in
general: a strong case for the truth of possibility A is under-
mined by a strong case for the truth of a possibility incom-
patible with A.

3.2. Imagine a sceptic who is unconvinced —Mary, say.
“On pain of what do I disobey this principle?”, she asks.
“In a three-horse race (granting that one and only one horse
will win), what is wrong with thinking each horse is as likely
as not to win?” Here is an argument designed to answer
that question.

We have already said that a primary function of uncer-
tain beliefs is as ingredients in decision-making, and that
is where this argument locates them. A simple model of
the structure of decision-making under conditions of un-
certainty is provided by betting behaviour. The first ver-
sion of this argument constructs a case where the betting
behaviour goes disastrously wrong, and the only plausible
explanation of this fact is violation of the Partition Princi-
ple.

If someone thinks a proposition is as likely as not, i.e.
50–50, then in normal circumstances it is not irrational for
her to accept a bet such that she gains £12 if the proposition
turns out to be true, and loses £10 if the proposition turns
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out to be false. What are normal circumstances? Well, she
prefers more money to less: she is not intent on dispers-
ing her embarrassing wealth. And the difference, for her,
between being £12 richer and the status quo exceeds the
difference between the status quo and being £10 poorer:
it would not be a disaster to lose £10; it would not be
of negligible value to gain £12.10 She is not abnormally
adversely disposed to risk, or to gambling in particular.
Even if circumstances are normal, I need not insist that it
is rationally obligatory for someone to accept such a bet
—merely that it is rationally permissible that she do so.
We would not raise our eyebrows if someone, with such
a probability judgement, accepts a bet at these odds: we
would not consider the behaviour peculiarly in need of a
special explanation.

Now Mary thinks horse A is as likely as not to win.
She accepts such a bet on the proposition ‘horse A will
win’. She thinks just the same about horses B and C.
Conditions, let us suppose, are still normal. It is rationally
permissible for her to accept those bets also. She does so.
But now, Mary has ended up giving away £8 whatever
happens: whichever horse wins, she gains £12 on one bet
and loses £10 on each of the other two.

A wins B wins C wins

Bet 1 +12 −10 −10
Bet 2 −10 +12 −10
Bet 3 −10 −10 +12
Overall − 8 − 8 − 8

10 One can state this argument in terms of “real” values rather than
monetary values (and choices of actions other than bets). But it would
take us too far afield to justify the structure of “real” values. Bets, with
monetary pay-offs, are taken as a model of a wider class of phenomena.

44



Now, Mary did not set out to make a certain loss of £8:
we assumed she preferred having more money to having
less. Something went wrong. And the only obvious place
her rationality can be faulted —the only rationally imper-
missible part of her reasoning— was that her probability
judgements violated the Partition Principle: if she thinks
that A is as likely to win as not, and B is as likely to win as
not, she must, if rational, think C has no chance of winning
at all.

A system of bets which, taken together, yield a certain
loss is called (for some reason) a “Dutch Book” and this
argument has come to be called the “Dutch Book Argu-
ment”. My version differs from others in that I do not
require the considerations involved in rendering the bets
acceptable to be rationally obligatory, only rationally per-
missible in normal circumstances. Circumstances are, by
stipulation, normal. A rationally impermissible result en-
sues. The only —or at least the most obvious— place to lay
the blame is the combination of probability judgements.11

There is a second version of the argument. Mary’s situ-
ation is as before, and she has the same judgements. She
is offered a double bet on the first two horses, like the
previous ones: she gains £12 if horse A wins, loses £10 if
it doesn’t; and she gains £12 if horse B wins, loses £10 if it
doesn’t. She accepts this bet. She is now offered another
bet: “You lose £20 if C wins, you gain £2 if C doesn’t
win.”

11 The locus classicus for this style of justification of the principles
of the ‘logic of partial belief’ is Frank Ramsey’s ‘Truth and Probability’
(1926) in his The Foundations of Mathematics (London: Routledge
and Kegan Paul, 1931). The argument was discovered independently
by Bruno de Finetti. See his ‘Foresight: its Logical Laws, its Subjective
Sources’ (1937) in H.E. Kyburg and H.E. Smokler (eds.), Studies in
Subjective Probability (New York: Wiley, 1964).
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“I certainly do not accept that bet”, says Mary. “I think
C has a 50–50 chance of winning. I am not prepared to
accept a 50% chance of losing £20, together with a 50%
chance of gaining only £2. Do you think I’m mad?”

“But you just have, in effect, accepted that bet”, we
could reply: the double bet she accepted has exactly the
same consequences, for each possible outcome, as the single
bet she refused: they present, in all relevant respects, the
same choice, differently described. In accepting the double
bet and rejecting the subsequent offer, Mary is, in effect,
saying “Yes please” and “No thank you” to the same thing.

Double bet:

A B C C not C
+12 −10 −10 equals −20 +2
−10 +12 −10

Again, if we ask what accounts for such blatant irrationali-
ty, there is only one plausible candidate: her violation of the
Partition Principle. (I leave it to the reader to decide which
version of the argument is the more compelling: which is
worse, being trapped into saying “Yes” and “No” to the
same thing, or being trapped into losing £8 for sure?)

We have considered just one example, but both versions
of the argument generalize, provided we can give a general
principle for deciding whether odds are acceptable, given
one’s probability judgements, a principle which is rational-
ly permissible in normal circumstances. The principle we
need is this. Suppose the probability I assign to a proposi-
tion A is x. Then a bet “You gain α if A is true, you lose β
if A is false” is acceptable if and only if xα > (1−x)β . [For
instance, if I think the probability of A is 1/4, the principle
dictates that I accept a bet on the truth of A provided the
odds are better than 3:1, for 1/4 times 3 = (1− 1/4) times
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1: I need better than a gain of £3 if A is true, a loss of £1
if A is false, given that I think A has only a probability of
1/4 of being true. If I judge p (A) = 1/10, then I need odds
better than 9:1 for a bet on A; etc.] All we need assume is
that this principle is a non-crazy way of deciding whether
bets are acceptable in normal circumstances. Then a recipe
can be given for constructing systems of bets which entail
a certain loss whatever happens when, and only when, one
violates the Partition Principle; and for transforming this
situation into one where the punter is led to say “Yes” and
“No” to the same option differently described.

3.3. Let us call a set of degrees of belief in the members
of a partition consistent if and only if they satisfy the
Partition Principle. We now have something to say in reply
to the sceptic’s questions “Why be consistent? What is so
good about having consistent sets of beliefs?”. By being
consistent one avoids the possibility of a certain kind of
undesirable consequence of one’s actions. But it might be
thought that this reply is less than fully adequate, on the
grounds that this kind of consequence is rare, and marginal
to our practices: the reply, it might be thought, doesn’t go
to the heart of the matter.

It is instructive to consider the parallel sceptical ques-
tion about full belief: why should I want my beliefs to be
consistent? The obvious reply is that we want our beliefs
to be true, and if they are inconsistent, they cannot all be
true. The sceptic need not yet give up: she may counter
that the elimination of all false belief is an unrealistic aim
—we have to live with the fact that some of our beliefs
are bound to be false. Why are consistent beliefs, some
of which are false, better than inconsistent beliefs, some of
which are false? A response might be that the elimination of
inconsistencies is part of our methodology for rooting out
error and acquiring true beliefs —should we come across
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an inconsistency, that is a sign that we need to investigate
matters further.

Can anything analogous be said about consistency for
partial beliefs? It might be thought not: we want our be-
liefs to be true; the ideal would be to have degree of belief
1 in all truths and 0 in all falsehoods, and no partial beliefs
at all. But this is an unattainable ideal. Suppose we had an
account of the best attainable degrees of belief to have in
given circumstances; a demonstration that such degrees of
belief are consistent; and that the elimination of inconsis-
tencies is part of our methodology for improving our de-
grees of belief —for bringing them closer to the best attain-
able in the circumstances. This would be a more satisfying
defence of consistency —a defence in which consistency is
embedded in a richer normative framework. The virtues
of consistency alone are not that impressive. The question
what makes a set of probability judgements “right”, or at
least better than another set, in given circumstances, is a
very difficult one, which is not addressed here.

4. Consequences of the Partition Principle

Write “b(A)” for a person’s degree of belief in A at a
time t.

(1) b (¬A)= 1 − b (A)

for {A,¬A} is a partition,12 whose members sum to 1. For
example, if b (rain tomorrow) = 0.7, b (no rain tomorrow)
= 0.3.

(2) A contradiction always gets zero degree of belief.13

12 Assuming classical logic applies; see note 9.
13 As I said above, we are restricting our attention to elementary,

recognizable logical facts.
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Proof: If A is a contradiction, ¬A is a tautology, so ¬A
is certain, so b (¬A) = 1. But b (¬A) = 1 − b (A). So
b (A) = 0.

For example, b (It will rain tomorrow and it won’t rain
tomorrow) = 0.

(3) If A and B are logically equivalent, then b (A) = b (B).

Proof: If A and B are logically equivalent, ¬A and ¬B
are logically equivalent, that is, true in exactly the same
possible circumstances. As {A,¬A} is a partition, so then
is {A,¬B}: at least one, and at most one of {A,¬B} can
be true. So b (A) + b (¬B) = 1. So b (A)+1− b (B) = 1. So
b (A) − b (B) = 0. So b (A) = b (B).

For example, b (Either Smith or Jones will lecture tomor-
row) = b (It’s not the case that neither Smith nor Jones
will lecture tomorrow).

(4) If A and B are incompatible, b (A∨B) = b (A) + b (B).

Proof: Suppose A and B are incompatible. Then, {A,B,
Neither}, i.e., {A,B,¬(A∨B)}, is a partition, whose mem-
bers sum to 1. But {(A ∨ B), ¬(A ∨ B)} is also a par-
tition, whose members sum to 1. These two partitions
have a common member, ¬(A ∨ B). So the sum of the
remaining members must be the same in each partition,
i.e. b (A ∨ B) = b (A) + b (B).

For example, {It’s square, it’s round, it’s neither square
nor round} is a partition; and {It’s either square or round,
it’s neither square nor round} is another partition. So b
(It’s either square or round) = b (It’s square) + b (It’s
round).

(5) b (A) = b (A&B) + b (A&¬B).

Proof: A and ((A&B) ∨ (A&¬B)) are logically equiva-
lent. So by (3), b (A) = b ((A&B) ∨ (A&¬B). But (A&B)
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and (A&¬B) are incompatible. So, by (4), b ((A&B) ∨
(A&¬B)) = b (A&B) + b (A&¬B).

For example, b (It will rain tomorrow) = b (It will rain
and the temperature will be higher than 10 degrees) + b
(It will rain and the temperature will not be higher than
10 degrees).

(6) If B follows logically from A (i.e. A entails B), b (B) ≥
b (A).

Proof: By (5), b (A) = b (A&B) + b (A&¬B). If A entails
B, A&¬B is impossible, so b (A&¬B) = 0, so b (A) =
b (A&B).

By (5) again, b (B) = b (A&B) + b (¬A&B)
= b (A) + b (¬A&B)
≥ b (A).

For example, the probability that a thing is square can’t
be greater than the probability that it has four sides.

(7) b (A ∨ B)= b (A) + b (B) − b (A&B).

This is the general case, when A and B need not be ex-
clusive. For example, the probability of either sun or rain
tomorrow equals the probability of sun plus the probability
of rain minus the probability of both.

Proof: {S∨R,¬S&¬R} is a partition; so is {S&R, S&¬R,
¬S&R, ¬S&¬R} so

b (S ∨ R) = b (S&R) +b (S&¬R)+b (¬S&R)
= b (S) +b (¬S&R)
= b (S) +b (R) − b (S&R).

From (7) follows the crucial step in our result of section
1: u (A&B) ≤ u (A) + u (B). For u (A&B) = b (¬(A&B)) =
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b (¬A ∨ ¬B) = b (¬A) + b (¬B) − b (¬A&¬B) = u (A) +
u (B) − b (¬A&¬B) ≤ u (A) + u (B).

These seven results are familiar facts about probability,
and follow from the Partition Principle. If it is right to
take the Partition Principle as a constraint on a person’s
degrees of belief at a time, these consequences of it are
equally constraints on a person’s beliefs at a time.

There are various geometrical, spatial ways of represent-
ing probabilities and their interrelations, which many peo-
ple find easier to grasp than algebraic proofs like the above.
There is the Venn Diagram: a rectangle, of area 1, repre-
senting the whole range of possibilities, in which we draw
circles representing the propositions A, B, etc., the area
of the circle representing the probability of the proposi-
tion; the area of the intersection of two circles A and B
representing the probability of A&B; etc.

There is the pie diagram: the whole circular pie rep-
resenting the total range of possibilities; if the size of a
wedge-shaped slice represents the probability that A, the
remainder represents the probability that ¬A; the slice rep-
resenting A can be further subdivided into wedges repre-
senting the probabilities of A&B, A&¬B, etc.
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My own preference is for a linear Venn Diagram —or
a rectangular pie of length 1, to be sliced in one direction
only; for this makes the scale of the probabilities more
easily discernible. I hope the role of the following diagrams,
as illustrations of the seven results proved above, is clear:

(A comment on the “horizontal spreading” of the later
rectangles: all the lines could be superimposed on a sin-
gle rectangle; they are spread out merely to enable us to
see more clearly where the different cuts occur. The abut-
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ting rectangles may be thought of as representing different
stages in the slicing of the logical cake.)

I once set students the following exercise —as a test of
consistency, not of their skills at meteorology. They were to
give their opinions about the probabilities of the following
occurring in a given city in a particular two-week period in
the near future.
(1) It will snow. (2) There will be hail. (3) There will be both
snow and hail. (4) There will be either snow or hail (i.e., at
least one). (5) Neither snow nor hail. (6) Precipitation but
no snow. (7) Snow but no precipitation. (8) Precipitation.
(9) Snow or rain or hail or sleet. (10) Snow and the average
temperature for the period below normal. (11) Snow and
the average temperature for the period at or above normal.

The consequences of the Partition Principle provide a
great many constraints on the consistency of answers to
these questions. It is not an utterly trivial matter, having
consistent degrees of belief (as their answers showed). Still,
we have, as yet, a rather small subject —that of consistency
of degrees of belief at a time. It becomes much richer once
we introduce the notion of a conditional probability; for
then we can raise questions about how degrees of belief
should change on the acquisition of new information.

It is surprising that these issues are not more discussed
in mainstream philosophy of logic. Uncertainty is not a
peripheral phenomenon. Yet its proper effect on our rea-
sonings is generally considered to be a subject of optional
interest, of which philosophical logicians need not blush to
admit ignorance. I have taken just a few beginning steps
here. But a lesson of the result of section 1 is that the most
obvious generalizations from the special case of certainty
are not always the right ones. Uncertainty is a fact of life
and we should pay attention to how our reasoning can live
with it.

Recibido: 9 de noviembre de 1995
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RESUMEN

Supongamos que usted tiene un argumento que reconoce como válido y
piensa, aunque no con seguridad, que las premisas son verdaderas. ¿De
qué manera constriñe esto lo que debe pensar sobre la conclusión del
argumento? La primera sección del artículo se aboca a esta cuestión.
No se puede sostener que si el argumento es válido y cada premisa
es casi segura, la conclusión es casi segura. La Paradoja de la Lotería
y la del Prefacio muestran vividamente que esto es erróneo. Muestro
que tratando a la falta de seguridad como teniendo la estructura de la
probabilidad, la respuesta correcta es ésta: que la falta de seguridad
de una proposición sea uno menos su probabilidad. Entonces, si (y
sólo si) un argumento es válido, la falta de seguridad de la conclusión
no puede exceder la suma de las faltas de seguridad de las premisas. Es-
to justifica el argüir a partir de premisas casi seguras. . . en tanto no
haya demasiadas. En la Paradoja de la Lotería un número grande de
pequeñas faltas de seguridad suman una falta de seguridad máxima.

El resto del artículo es una defensa de la tesis de que la falta de
seguridad debe ser tratada en términos de probabilidad (habiendo ya
mostrado una atractiva consecuencia de tal tesis). En la sección 2 de-
fiendo que las actitudes epistémicas con respecto a una proposición
deben venir en grados para explicar adecuadamente diferencias y simi-
litudes en el comportamiento racional. Y arguyo que la estructura de
“grados de creencia” es apta para una idealización mediante una escala
numérica. En la sección 3 defiendo el “Principio de la Partición”, el
cual rige los grados de creencia, y garantiza una estructura probabilís-
tica. Llámese “partición” a un conjunto de posibilidades exclusivas
y exhaustivas, un conjunto de proposiciones tal que necesariamente
una de ellas es verdad pero es imposible que más de una de ellas lo
sea. El Principio afirma que los grados de creencia de una persona en
los miembros de una partición deben sumar uno (el valor asignado a
la seguridad). La sección 4 muestra que el Principio de la Partición,
entendido como un requisito de consistencia de grados de creencia, es
fértil en consecuencias independientemente plausibles.

Así, este artículo sirve como introducción a una manera fructífera
de desarrollar una lógica de la falta de seguridad.

[Traducción: Raymundo Morado]
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