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SUMMARY: The Representational Theory of Measurement (RTM), especially the
canonical three volume Foundations of Measurement by Krantz et al., is a landmark
accomplishment in our understanding of measurement. Despite this, it has been
far from easy to pinpoint what exactly we can learn about measurement from
RTM, and who the target audience for RTM’s formal results should be. In what
sense does RTM provide foundations of measurement, and what is the philosophical
significance of such foundations? I argue that RTM provides semantic foundations
of measurement, and that their philosophical significance lies in a shift towards
structural representation.
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RESUMEN: La Teoria Representacional de la Medicion (RTM, por sus siglas en
inglés), especialmente la candnica obra en tres volamenes Los fundamentos de la
medicion de Krantz et al., es un logro histérico en nuestra comprension de la
medicion. A pesar de esto, no ha sido nada ficil determinar qué podemos aprender
exactamente de RTM acerca de la medicion y quién deberia ser el ptblico objetivo
de los resultados formales de RTM. ;En qué sentido RTM proporciona fundamentos
de la medicion y cual es el significado filosofico de tales fundamentos? Argumento
que RTM proporciona fundamentos semanticos de la medicién, y que su significado
filosofico radica en un cambio hacia la representacioén estructural.

PALABRAS CLAVE: estructuralismo, representacién estructural, similitud estructu-
ral, significado, invariancia

1. Introduction

The Representational Theory of Measurement (RTM) is often pre-
sented as a foundational theory of measurement, particularly in the
canonical three volume presentation Foundations of Measurement

(Krantz et al. [1971] 2007; Suppes et al. [1989] 2007; Luce et al.
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[1990] 2007). The claim to being a foundational theory of measure-
ment has been challenged: does RTM even offer a complete theory
of measurement? After all, many important aspects of measurement,
most notably uncertainty and error, receive little treatment by RTM,
and much of the discussion is too abstract to be considered useful
for practical applications (Savage and Ehrlich 1992). For the practice
of measurement, RTM can easily seem irrelevant (Cliff 1992). For
philosophers, however, the significance of RTM might very well lie
in its foundational aspirations. Philosophers of science are often con-
cerned with the foundational aspects of the sciences they investigate,
viz. the foundations of physics or the foundations of biology, or even
the foundations of particular theories, e.g., axiomatic quantum field
theory. This is not to say that philosophers of science are only con-
cerned with foundational questions, but it might suggest that RTM,
as a foundational project, is of more interest to philosophers of mea-
surement, than to some practitioners of measurement. To understand
the philosophical significance of RTM, then, we need to ask in what
sense RTM provides foundations of measurement and what these
foundations are. These are the questions I’'m concerned with in this
essay. | argue that RTM fails to establish epistemic foundations yet
provides more than formal foundations of measurement; instead,
it provides semantic foundations by providing a formal theory of nu-
merical representation as structural representation. While my reading
draws on interpretive hints provided by the authors of Foundations,
my main aim is to show that such semantic foundations are indeed
provided by RTM, regardless of whether this was the main intention
of all contributors to the programme.

The paper is organised as follows: section 2 provides a brief
overview of the representational theory of measurement. Section 3
investigates whether RTM can provide epistemic foundations for
measurement and agrees with recent critics that it cannot. Section 4
looks at the converse move by defenders of RTM, which seeks to
restrict RTM to purely formal foundations. I argue that this per-
spective is too limited: while RTM provides formal foundations, its
contributions go beyond that. Section 5 accordingly explores what
I take to be the semantic foundations of measurement provided by
RTM. Section 6 argues that RTM as semantic foundations is both
successful and philosophically significant. Section 7 concludes.
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2. The Representational Theory of Measurement

Representationalism about measurement goes back to the 19th cen-
tury (Diez 1997a; 1997b), with the core idea that the use of numbers
in measurement is purely representational. This contrasts with the
idea that measurement is of properties that are themselves some-
how “numerical”. The representational theory of measurement is
best known through the three volume treatise Foundations of Mea-
surement, wherein the authors develop a detailed formal theory of
different types of measurement structures and their numerical repre-
sentations. On the face of it, this formal theory is a theory of mea-
surement insofar as measurement is understood “as the construction
of homomorphisms (scales) from empirical relational structures of
interest into numerical relational structures that are useful” (Krantz
et al. [1971] 2007, vol. 1, p. 9). With this apparent definition of
measurement in hand, RTM proceeds to prove, for a variety of such
“empirical relational structures”, first a representation theorem, and
second, a uniqueness theorem.

To prove such representation and uniqueness theorems, the rel-
evant “empirical relational structures” have to be characterised ax-
iomatically. Accordingly, the Foundations of Measurement presents
a range of such axiomatically characterised structures —most no-
tably, additive extensive structures, difference structures, and con-
joint measurement structures. For each type of structure, represen-
tation and uniqueness theorems are proven. It is this axiomatic char-
acterisation that, at least initially, seems to be what makes RTM
foundational. The axioms, broadly speaking, characterise a set of
entities and relations over them, in particular ordering relations and,
for some structures, a concatenation operation as well. These axioms
can be interpreted as holding of particular empirical relational struc-
tures, as well as of relevant numerical structures. For example, a
set of weights and a beam balance can be interpreted as an additive
extensive measurement structure: for two weights, wi and wg, wy is
heavier than wy if and only if, when each is placed in a pan, then pan
with wy in it is lower than the pan with we in it; if the two pans are
balanced, w; and wy are of equal weight. Placing w; and wsy together
in one pan is equivalent to the combined weight of wy and ws. Here,
certain empirical relations and operations are interpreted as satisfy-
ing the axioms for additive extensive measurement structures. What
makes numerical structures suitable representations for certain kinds
of empirical structure is precisely that we can find interpretations
of axioms that make them hold of the empirical structure on the
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one hand, and the numerical structure on the other. Constructing a
homomorphism from the empirical relational structure to the numer-
ical structure is to demonstrate that the axiomatically characterised
structure is preserved in the mapping.

The representation theorem establishes the existence of a ho-
momorphism from the empirical relational structure to a suitable
numerical structure. An empirical relational structure, for example
a collection of rods (X,o0,2), which can be compared for relative
length, and which can be concatenated, is shown to be representable
by a numerical structure, for example the real numbers under addi-
tion (R, +,>). A homomorphism is a structure preserving mapping,
so the representation theorem is established by an existence proof
for a certain type of function, ¢. Typically, there will not be a single
such function, but a family of homomorphisms. To delineate the
family of homomorphisms that yield appropriate representations is
the purpose of the uniqueness theorem.

The uniqueness theorem, roughly, shows how unique the result-
ing representation is, that is, which changes to the mapping count
as preserving the same structure. For example, because Celsius and
Fahrenheit are interval scales, ratios formed using numerical values
from these scales are not legitimate: we cannot say that it’s twice
as warm today as it was yesterday, even if it is true that today the
temperature is 6 degrees Celsius and yesterday’s temperature was 3
degrees Celsius. We cannot do so, because ratios are not invariant on
interval scales, as can be seen from the fact that the equivalent nu-
merical values in Fahrenheit do not form the same ratio: 37.4 degrees
Fahrenheit and 42.8 degrees Fahrenheit do not stand in a 1:2 ratio.
In the locution employed in measurement theory: ratio comparisons
on interval scales are meaningless. Formally, a uniqueness theorem
shows, which transformations of the initial homomorphism are per-
missible, that is, which ¢ — ¢’ are such that both ¢ and ¢’ are
homomorphisms to the same numerical structure. The uniqueness
theorem thereby tells us which structure is invariant in the mapping
from the empirical relational structure to the numerical structure.
Depending on the type of permissible transformation, the resulting
representations are of different “strengths”, along the lines of the
hierarchy of scales originally introduced by Stevens (1946).!

! This hierarchy of scales is further developed and improved in the develop-
ment of the representational theory of measurement. Especially results collected in
volume III of Foundations indicate a more sophisticated understanding of unique-
ness properties (Luce et al. [1990] 2007, chapter 20). In general, where Stevens’
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Two further, interconnected points are worth mentioning beyond
this initial characterisation of RTM. First, uniqueness theorems only
capture permissible transformations of homomorphisms to the same
numerical structure. Further variation in numerical representation
arises from the choice of different numerical structures to represent
the same empirical relational structure. In particular, the binary oper-
ation on an ordered extensive structure can be interpreted as addition
—as in additive extensive structures—, but can also be interpreted
as multiplication (Krantz et al. [1971] 2007, vol. 1, pp. 99f). Given
the axiomatic characterisation of the relational structure, there is no
formal reason not to do so. Second, in part in response to this first
point, later more abstract work in the representationalist programme
moves away from characterising uniqueness in terms of permissible
transformations and moves instead towards characterising uniqueness
more abstractly in terms of the automorphisms of structures repre-
sentable at interval and ratio scales (Luce et al. [1990] 2007, section
20.2; Narens [2002] 2012, chapter 2). These points will become rele-

vant in the discussion below.

3. RTM as Epistemological Foundations of Measurement

One reading of RTM’s foundational ambition is to understand the
project as a foundationalist epistemology for measurement.? Such
epistemic foundations for measurement would demonstrate how the
formal machinery of RTM, together with empirical observations, can
be used to put measurement, and more specifically, numerical rep-
resentations of phenomena, on a firm basis. It would offer a key
element of an empiricist, foundationalist epistemology for science.
Such firm, formal-empirical foundations would obviously be desir-
able as they would serve to justify measurement where they could be
found to support numerical representations, while also forming the
basis of criticism of numerical representations where no such founda-
tions are available (Michell 1999). They would furthermore provide
philosophical justification for the exalted status of measurement in
science: if measurement results could be secured through a chain of

hierarchy seems to have been drawn from examples of measurement scales, Foun-
dations aims to provide an overall mathematical theory of different measurement
scales.

% This reading has also sometimes been called “evidential” (Tal 2021), in contrast
to the “conceptual” reading I will be discussing in section 4. In addition to some of
the authors of Foundations, the evidentialist project can be found in some traditional
approaches to measurement (Campbell 1920; Carnap 1966) and has more recently
been defended by Joel Michell (1999) as a form of measurement realism.
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careful formal inferences from empirical observations to numerical
representations, this would provide good reason for taking measure-
ment to be a particularly secure form of empirical knowledge.

How might such epistemic foundations be provided by RTM?
In the first instance, RTM shows —through its representation the-
orems— that a particular “empirical relational structure” may be
represented by a particular numerical structure. Given a suitable
axiomatisation of the empirical relational structure, RTM shows in a
formally rigorous way that a numerical representation of that empiri-
cal structure is possible. Moreover, through the uniqueness theorem,
RTM shows how strong this numerical representation is, which sug-
gests what kinds of inferences we may draw from the numerical rep-
resentation. So, once the axiomatic characterisation of the empirical
structure in question is in place, RTM provides us with solid, formal
tools for finding suitable numerical representations for the relational
structure in question. But here is the one-million-dollar question:
what justifies a particular axiomatization of the empirical relational
structure?

Before we can address this question directly, we first need to clar-
ify what is meant by an empirical relational structure. There are
at least two candidates for empirical relational structures: on the
one hand, one might have in mind a particular material collection
of items, together with specific interventions and procedures. This is
suggested by some of the measurement structures provided as exam-
ples in the Foundations of Measurement, for example a collection
of rods together with the procedure of ordering them by length,
and an intervention for concatenating them end-to-end, or by the
example of weight measurements given above (Krantz et al. [1971]
2007, see, e.g., section 3.6., for physical interpretations of extensive
measurement structures).

On the other hand, the “empirical relational structure” might also
be interpreted as data-structure, and indeed, a data structure that has
been adjusted for outliers and errors. Such cleaned-up data structures
may already contain idealising assumptions and are generally abstrac-
tions from the raw data. Both interpretations of empirical relational
structure are present in RTM, with the former suggested by the
examples, while the latter is occasionally offered as a way of reading
the empirical relational structure in question (e.g., “the choice of
an empirical relational structure as an abstraction from the available
data” (Krantz et al. [1971] 2007, vol. 1, p. 13)).

In order for RTM to play the kind of epistemic role envisioned by
the epistemological foundationalist project, the first interpretation is
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the most relevant way of understanding “empirical relational struc-
ture”. If “empirical relational structure” is understood as a cleaned-
up data model, then questions about empirical foundations simply
move to the step of constructing the cleaned-up data model. Yet
RTM says little about the construction of such abstracted data mod-
els.? So, let’s have a look at the understanding of “empirical relational
structure” as a material system on which we may intervene.

Putting the measurement of such a structure on firm foundations
requires that we axiomatize the structure, or that we show that the
structure in question satisfies the axioms for one of the measurement
structures described by RTM. This “formalisation” or “axiomatisa-
tion” is key to the foundations of measurement, as far as RTM is con-
cerned (Krantz et al. [1971] 2007, vol. 1, p. 13). How do we choose
a suitable axiom system for a given empirical relational structure?
There are different types of axioms we need for the formalisation:
necessary axioms and non-necessary or “structural” axioms (Krantz
et al. [1971] 2007, vol. 1, pp. 21-23). An example of the former is the
imposition that the binary relation on the empirical relational struc-
ture must be taken to be transitive; this requirement arises because
the intended representing relation, <, is transitive. So here we have a
case of imposing a feature of the numerical structure on the axioma-
tisation of the empirical relational structure. Non-necessary axioms
come in a variety of flavours. Some of them are needed to rule out
empirically uninteresting structures, by explicitly excluding trivial
ways in which the axioms might be satisfied. Others are needed to
ensure solvability for certain equalities and inequalities, for example
by stipulating that the structure be sufficiently dense to contain an
element ¢ in between any two elements a <b:a <S¢ S b.

This means that the process of finding a suitable axiom system
will typically be bi-directional: on the one hand, we need to look at
the numerical structure we wish to use to represent the empirical
relational structure, to identify key features —such as transitivity for
the binary relation— that we require an empirical relational structure
to have in order for it to qualify as representable by the numerical
structure. On the other hand, we need to look to the empirical struc-
ture to identify features we are interested in and to distinguish cases
of structures trivially satisfying the axioms from those that non-
trivially satisfy them.

To what extent can we interpret RTM as an attempt at providing
epistemic, and indeed empiricist, foundations of measurement? Es-

* We will re-encounter this second reading in section 6.
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pecially the early chapters of Foundations of Measurement suggest
that RTM is in the spirit of empiricist foundations:

What criteria, then, do we impose on an axiomatization for it to be
satisfactory? One demand is for the axioms to have a direct and easily
understood meaning in terms of empirical operations, so simple that
either they are evidently empirically true on intuitive grounds or it is
evident how to systematically test them. (Krantz et al. [1971] 2007,
vol. 1, p. 25)

Here, the authors of Foundations of Measurement seem to subscribe
to a project broadly in the spirit of earlier empiricist foundationalists,
like Campbell (1920) or Carnap (1966). The theoretical terms of the
axioms, including in particular, the relations and operations charac-
terised by the axioms, are not to be understood merely as implicitly
defined by the axioms, but require an empirical interpretation that
is evident or intuitive, for example by identifying the binary opera-
tion on the structure with a particular empirical procedure. The idea
very much seems to be that by looking at an empirical relational
structure, we should have an observational or intuitive sense of how
the axioms we are choosing to describe the system might apply to it,
and in particular, how the relations and operations on the structure
are to be understood. Similarly, whether axioms are appropriate is
not just a matter of simplicity or elegance, but of descriptive ade-
quacy: “The axioms purport to describe relations, perhaps idealized
in some fashion, among certain potential observations, and adequacy
of description is a more telling arbiter than beauty or simplicity”
(Krantz et al. [1971] 2007, vol. 1, p. 27).

In taking “adequacy of description” as the primary criterion by
which to judge the quality of an axiomatisation, the authors of Foun-
dations of Measurement make it clear that the axioms are not to be
understood as mere mathematical convenience; the formalisation is
meant to capture something about the empirical relational structure.
This seems to have two implications: first, the axiomatisation could
get the empirical relational structure wrong, and second, there might
be one axiomatisation that is better than all competitors on account
of being the most descriptively adequate. Neither of these appar-
ent implications is explicitly addressed by RTM, but they turn the
empiricist foundationalist project in a distinctively realist direction.
An alternative way of treating these axioms would be to allow for
more pluralism in the evaluation criteria for axiom systems: simplic-
ity could be traded off against strength, and either of them could be
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traded off against adequacy. If a more highly idealised axiom system,
assuming, for example, error free transitivity or existence of relevant
entities to satisfy various solvability axioms, serves to provide a sim-
pler, more effective axiomatisation, this might be preferred over a
more descriptively accurate one, which seeks to capture the various
ways in which in the empirical structure fails to satisfy simpler or
stronger axioms. Crucially, by elevating descriptive adequacy to the
most important criterion for judging an axiom system, the authors
of Foundations appear to reject such pluralism of criteria in favour
of more monist view, which in turn invites a significant reduction
in pluralism of axiom systems. Where from a pluralist view, choos-
ing axioms for formalising a particular empirical relational structure
would seem to be pragmatic —allowing for different preferences
and competing axiomatisations, depending on local purposes and
interests— the proposal here seems to be epistemic: there are better
or worse ways of axiomatizing a given empirical relational structure,
depending on how descriptively adequate they are. This commitment
invites criticism.

First of all, there are several ways in which concrete material struc-
tures will simply fail to satisfy the axioms entirely: material structures
will be finite, whereas the axioms typically assume infinite struc-
tures. Even for these finite structures, interventions and procedures
like aligning rods end-to-end or placing metal cylinders on a beam
balance are only feasible for a limited range of lengths and weights
and under certain conditions: don’t try using a beam balance in
space. And even for cases where we can carry out the procedures
in question, there is a finite degree of observational resolution: some
differences will simply be too small to detect. This can lead to the in-
troduction of error, whereby pairwise comparisons of a series of rods
might lead us to judge that they are the same length, yet comparing
the first and last members of such a series of pairwise comparisons
reveals this pair to be unequal in length.*

The trouble for RTM as epistemic foundations of measurement
is not merely that this means the fit of the axioms to any concrete
material structure will at best be approximate or incomplete, but also
that anyone attempting to make a case for representing a particular
phenomenon as satisfying the axioms for a particular measurement
structure will be faced with difficult and controversial choices: is

* These criticisms have been made in a variety of ways (Kyburg Jr. 1990; Savage
and Ehrlich 1992), and the authors of Foundations were well aware of some of these

concerns (e.g., Krantz et al. [1971] 2007, vol. 1, pp. 27-28).
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the appearance of error in the pairwise comparisons a matter of
observational resolution, or does it indicate a change in the standards
we used to carry out our measurement procedures? Can it be fixed,
by more precise measurement procedures, or is it a fundamental
problem with the attribute in question?

A more recent challenge to RTM as epistemic foundations has
been put forth by Eran Tal. Tal’s objections target not merely the
way in which RTM’s treatment of empirical relational structures
seems to require idealising assumptions, but the very idea of a foun-
dationalist epistemology for measurement. In particular, Tal argues
that RTM as a foundationalist epistemology for measurement falls
prey to two myths: the “myth of well-ordered data”, according to
which “it is possible to infer the qualitative structure of objects and
events from empirical data independently of any prior attribution of
quantitative structure to those objects and events” and the “myth of
qualitative foundations”, according to which “the adequacy of numer-
ical representations can only be justified by a homomorphism from
an independently established qualitative structure to a quantitative
one” (Tal 2021, p. 704). As Tal attributes only the first of these to
RTM as presented in Foundations, 1 shall set aside the second myth
in the discussion here.

The first of these myths, according to Tal, is prevalent in all ev-
idential interpretations of RTM, and it is arguably a presupposition
of the epistemic foundationalist project. If the aim is to justify that a
particular attribute or phenomenon can be represented numerically,
we must assume that we can characterise the phenomenon in such a
way as to not already presuppose its numerical representability. So,
in particular, in characterising a structure as, e.g., a closed extensive
structure, this characterisation should not be informed or justified
by an (implicit) assumption that a certain numerical representation
of the structure is appropriate. Doing so would be circular, thereby
undermining the foundationalist ambition of the project. Tal argues
that such a non-quantitative characterisation is impossible. In partic-
ular, the presence of systematic error, especially systematic non-linear
error means that the data themselves will violate transitivity or other
axioms (Tal 2021, p. 719). Unlike random error, discussed above,
correcting these errors requires imposing a quantitative structure on
the attribute under measurement (Tal 2021, p. 718). In order to
construct a mapping from the data structure to the numerical struc-
ture, we therefore have to make corrections to the data structure
that already presuppose that the attribute in question is quantitative,
thereby undermining the claim to finding out whether the attribute

Critica, vol. 55, no. 163 (abril 2023) DOI:https://doi.org/10.22201/iifs.18704905¢.2023.1409



THE PHILOSOPHICAL SIGNIFICANCE 91

is quantitative in the first place. Without such presuppositions, the
data would not yield a structure amenable to systematic numeri-
cal representation. At least one important ambition of the epistemic
foundationalist project is thereby undermined: we cannot demon-
strate, purely on the basis of qualitative data and formal theorems,
that numerical representations (of a certain strength) are justified.

These concerns throw into doubt RTM’s claim to offering epis-
temic foundations of measurement. RTM provides an epistemically
secure route from axiomatized “empirical relational structures” to
axiomatized “numerical relational structures”, through its representa-
tion and uniqueness theorems. But when it comes to the justification
for axiomatizing a particular phenomenon as a particular relational
structure, RTM has little to offer. While we might point to the prag-
matic success of axiomatizing a phenomenon a particular way as a
reason to keep doing so, such a justification seems coherentist, not
foundationalist. Chang, for example, interprets the quantification of
a phenomenon like temperature as an iterative process, where ear-
lier steps are revised in light of later improvements (Chang 2004,
ch. 5). Crucially, what counts as a success will be shaped by our
understanding of what we take the quantitative structure of the phe-
nomenon to be (Chang 2004, pp. 212-217). This is in sharp contrast
to the foundationalist project, which aims to anchor the numerical
representation of the phenomenon firmly in purely qualitative terms,
and to establish, once and for all, what the quantitative structure of
the phenomenon is. The criticism of RTM as epistemic foundations
is not that our use of measurement representations is unjustified,
but that a foundationalist justification is impossible. If RTM fails to
provide epistemic foundations of measurement, what alternative ways
of understanding the foundational project are there?

4. RTM as Formal Foundations

In light of the difficulties of treating RTM as providing epistemic
foundations for measurement, some RTM friendly philosophers have
recently proposed a different, less ambitious reading of RTM. Instead
of providing epistemic foundations of measurement, RTM’s remit is
more limited: it provides a library of mathematical theorems, use-
ful as a tool in scientific concept formation (Heilmann 2015). This
new interpretation of RTM departs from the epistemic interpreta-
tion in two steps: first, by viewing RTM as providing a library of
mathematical theorems, it reduces RTM’s foundational ambitions to
purely formal foundations. Second, by dropping the idea that what
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is being mapped is an empirical relational structure, Heilmann’s in-
terpretation opens up the possibility of applying RTM to abstract
concepts as well. As Heilmann sees it, the great advantage of this
interpretation of RTM, aside from avoiding some of the criticism
presented in the previous section, is that RTM can be explicitly used
as a tool in concept formation, i.e., in constructing (or engineering)
concepts with the aim of mathematically representing them. This is a
concern not merely in science, but also in certain areas of philosophy.
Similarly, Baccelli (2020) argues for a more abstract take on the role
of axiomatic measurement theory: the aim is not to capture measure-
ment procedures, but to describe idealised measurement structures,
whether used in science or not.”

This new interpretation of RTM certainly seems to fit better with
what RTM actually delivers: on the face of it, Foundations of Mea-
surement is a mathematical textbook containing a large number of
theorems for a variety of relational structures. Moreover, the more
abstract developments of measurement theory in the later books of
Foundations of Measurement point away from the more obviously
empirical foundations attempted in volume 1. Indeed, by volume 111,
the axioms are no longer classified into necessary and non-necessary
(as in volume I, see discussion above), but instead are distinguished
into: design axioms, technical axioms, empirical axioms, and idealised
axioms (Luce et al. [1990] 2007, vol. 3, pp. 251-252; 28.1). Of these,
only empirical axioms can be expected to be tested “under some
standard interpretation of the primitive concepts” (Luce et al. [1990]
2007, vol. 3, p. 252). While these are still regarded as the most
interesting kind of axioms, there is no longer an expectation that
these interpretations will be empirically obvious; nor is there an ex-
pectation that descriptive adequacy trumps all other considerations.
Finally, and perhaps most remarkably, this classification of axioms
does not reflect the formal features of the axioms, but is context
dependent:

The important point is that the status of an axiom in terms of the
four classes identified cannot be inferred from its mathematical form
alone. Its status depends as well on the intended interpretations of
the primitive concepts and, more loosely, on prior knowledge about the

® Tal suggests a further heuristic interpretation of RTM as a third alternative to
the epistemic and formal (or “evidential” and “conceptual”) foundations discussed
here (Tal 2021, p. 733). But while his heuristic spin on the conceptual interpretation
indicates how RTM might be useful in the empirical sciences, I don’t think it offers
any further sense in which RTM might be regarded as foundational.
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empirical domain and the kinds of experiments that are conducted in
this domain in which the primitive concepts are ordinarily interpreted.
(Luce et al. [1990] 2007, vol. 3, p. 253)

The later work in the Foundations of Measurement seems to fit well
with Heilmann’s more modest formal interpretation of the founda-
tionalist project.

Despite this promising fit between the new interpretation and
some of the later work in the representational theory of measure-
ment, the restriction to purely formal foundations can seem like a
consolation prize. After all, if the ambition had been to provide rig-
orous epistemic grounds for measurement, to end up merely with a
formal framework that offers useful heuristics seems disappointing.
Heilmann rightly insists that giving up on the stricture that the rep-
resented structure be empirical will greatly widen the applicability of
RTM, and thereby increase its relevance to a range of fields, including
philosophy, which are not in the first instance concerned with empiri-
cal data. Yet, the criticism that RTM is largely useless for actual mea-
surement practice seems to gain force from this interpretation. While
RTM might force researchers to distinguish clearly between assump-
tion made for simplicity (idealising axioms), assumptions built into
the design of the experiment (design axioms), assumptions made to
enable the use of convenient mathematical tools (technical axioms),
and finally empirical assumptions they are actually going to test (em-
pirical axioms), the difficult work of deciding, how any particular
assumption should be classified falls squarely onto researchers in a
particular field. RTM provides no further guidance.

Perhaps the second advantage Heilmann claims for his new in-
terpretation might help here. Instead of asking, how we might get
from a qualitative structure to a numerical representation, Heilmann
thinks RTM can also help us “backward engineer” the qualitative
foundations of a given numerical representation (2015, p. 794). What
he has in mind are cases where concepts like “happiness” are being
numerically represented in various ways, but we find disagreement
over the concept itself. RTM, Heilmann suggests, might help clarify
what it would take for happiness to be numerically representable and
further, we might then try to find the requisite empirical relations
to “sustain both the concept of happiness and a theorem in RTM”
(2015, p. 794). It is not entirely clear to me, why this form of back-
wards engineering requires Heilmann’s new interpretation though,
especially since the second, epistemic step of searching for empirical
relations to bear out the theorems stipulated by RTM, seems to revert
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to the epistemic reading of RTM, as Heilmann himself acknowledges.
It thereby seems at risk of the objections against such a reading dis-
cussed in section 3.

More importantly for the purposes of this paper, it seems less clear
in what sense RTM provides foundations of measurement on this
reading, as opposed to a useful collection of theorems and examples
of mathematical structures for a wide range of possible applications.
While many philosophers will appreciate a formal theory as an aid
to conceptual clarity, the new interpretation seems to refrain from
reading RTM as making claims about the nature of measurement. If
RTM provides formal foundations of measurement, we would expect
them to reveal something about measurement, not merely about the
foundations of the particular concepts to which RTM may be applied.
The reading of RTM as providing epistemic foundations of measure-
ment provided a clear sense of why such foundational work would be
philosophically significant: it would be a cornerstone for an empiricist
epistemology of science. By contrast, the more modest proposal of
RTM as a nifty piece of applied mathematics, while perhaps useful
to some scientists and philosophers, lacks the promise of shedding
light on foundational problems of measurement. While Heilmann is
entirely correct that his reading of RTM is compatible with RTM
as foundations of measurement, he makes it clear that the virtue of
his reading is precisely to refrain from treating RTM as a full-fledged
theory of measurement. Even if the new, modest interpretation offers
a plausible reading of RTM, the question remains whether RTM can
be understood as foundational at all.

5. RTM as Semantic Foundations

It is my contention that RTM is philosophically significant because
it provides semantic foundations of measurement. RTM provides se-
mantic foundations, insofar as its main concern is with the representa-
tion of measurement. To understand the philosophical significance of
RTM, we need to have a careful look at what RTM’s understanding
of the representation of measurement tells us about the nature of
measurement and about the nature of numerical representation.

The problem RTM addresses is how we can use numbers to rep-
resent empirical phenomena. This is a fundamental and philosoph-
ically interesting problem arising from measurement, although it is
of course not the only philosophically interesting problem of mea-
surement. The concern is best understood in the broader context
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of the problem of why mathematics is so effective in its applica-
tion to physics and the empirical world more broadly (Wigner 1960;
Benacerraf 1965). While not all applications of mathematics in sci-
ence are cases of measurement, measurement provides a paradigmatic
case of how mathematics, and numbers in particular, seem to apply
to empirical phenomena.

The representational theory of measurement answers this chal-
lenge in two steps: first, by suggesting that the role of numbers
is representational and second, by showing how numbers can play
this representational role through their structural, rather than their
intrinsic features. In these two steps, RTM has transformed the way
we think about the role of numbers in measurement. Let’s have a
look at each step.

To say that the role of numbers in measurement is representational
is to reject the idea that attributes like mass or length are inherently
numerical. Numbers are not out there, as part of the empirical world
we are trying to describe with our theories.® Instead, numbers are
strictly part of the representational machinery we use to describe the
physical world. It is important to note that in the Foundations of
Measurement, this representationalism concerns the role of numbers,
not merely numerals.” Numerals are of course representational fea-
tures, insofar as they are symbols. The authors of Foundations of
Measurement, by contrast, clearly take numbers and other mathe-
matical objects to be playing a representational role. This is due to
the second innovation of Foundations, which is the move to numer-
ical structures as the representing entity and to structure preserving
maps as the means by which a representation is achieved. Num-
bers do not represent individual magnitudes on their own, but by
being part of a relational structure. The representation of the empir-
ical phenomenon is achieved through a homomorphic mapping from
a phenomenon —understood as an empirical relational structure— to
a numerical relational structure. It is numbers, not numerals, which
form the relevant structure. The representational theory of measure-
ment, as presented in Foundations and in the subsequent literature

® This does not preclude Platonism about mathematics itself, i.e., the idea that
mathematical objects are out there as independent abstract entities. But as such,
these mathematical entities are not the target of measurement. Rather, the repre-
sentational view opposes views of numbers in nature, like Michell 1999; Forrest and
Armstrong 1987.

" As Berka (Berka and Riska 1983, chapter 2) has pointed out, the representa-
tionalist tradition contains a certain amount of ambiguity in the use of “numeral”
and “number”, going back at least to Campbell.
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is a theory of structural representation: representation of structures,
by structures.

The increasing importance of structure in science and in scientific
representation has of course been noted before. A variety of struc-
turalisms, both in mathematics and philosophy of science have been
around since the mid-20th century (Benacerraf 1965; Maxwell 1971;
Worrall 1989; Shapiro 1997; Ladyman 1998; French 2014). In mathe-
matics, structuralism has often been offered as a form of mathemati-
cal realism that avoids commitment to mathematical objects (Shapiro
2000), while in the philosophy of science, structural realism has been
offered a moderate form of scientific realism (Worrall 1989; Ladyman
1998). Both types of structuralism share the idea that relations, not
objects are central to mathematics and physical science respectively.

We are apt to miss the structuralism embedded in RTM, precisely
because Foundations of Measurement does not offer an explicit
structuralist philosophy for either mathematics or science. Instead,
a form of structuralism is implied by RTM’s famous statement that
measurement is “the construction of homomorphisms (scales) from
empirical relational structures of interest into numerical relational
structures that are useful” (Krantz et al. 1971, p. 9). This claim has
often been criticised as an inadequate or incomplete definition of
measurement, and rightly so. It seems too narrowly focussed on nu-
merical representation as the defining feature of measurement —no
mention is made of the actual experimental or observational pro-
cesses needed to describe the empirical relational structure (Frige-
rio, Giordani, and Mari 2010). I propose instead, that we take this
statement as an expression of RTM’s structuralism.® The problem
of measurement addressed in Foundations is the problem of numer-
ical representation, and this problem can be solved by adopting a
structural understanding of how numbers can represent empirical
phenomena.’

What is the philosophical significance of moving to structural rep-
resentation as the account of how numbers apply to empirical phe-

8 Wolff (2019; 2020) offers a reading of RTM, which also emphasises the role
of structures. But where Wolff (2020) investigates the metaphysical implications of
RTM for our understanding of quantities, the present paper offers a reading of RTM
as semantic foundations of numerical representations.

A more explicit commitment to structuralism by one of the authors of Founda-
tions can be found in Suppes’ later book Representation and Invariance of Scientific
Structures: “We cannot literally take a number in our hands and apply it to a phys-
ical object. What we can do is show that the structure of a set of phenomena under
certain empirical operations is the same as the structure of some set of numbers
under arithmetical operations and relations” (2002, p. 4).
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nomena? The first and most important consequence of the shift to
structural representation is the articulation and partial solution of
the problem of artifacts or conventional features in numerical rep-
resentation. Such features are present in a numerical representation,
but should not be taken to be significant or “meaningful”. This
problem was known prior to RTM: everyone was aware that choices
of unit are conventional, for example. Representing mass in pounds
or kilogram is not the expression of a substantive disagreement, but
a difference in representation only. Nonetheless, measurement rep-
resentations will contain a choice of unit, even if such a unit is
acknowledged to be conventional.

What Foundations offers is a more systematic account of how such
arbitrary features arise and, more importantly, how to correct for
them. RTM treats such features as surplus structure.'® Uniqueness
theorems are built on the idea that in order to identify the surplus
structure in a representation, we need to focus on the structure that
is invariant across all the different representations. Structure that is
not invariant across all the representations is surplus —an artifact of
the particular representation. Such surplus structure is thought not
to correspond to anything in the empirical structure represented, and
accordingly does not legitimize inferences that depend on this non-
invariant structure. By demanding that in addition to a representation
theorem, a uniqueness theorem must also be proven, RTM puts the
problem of surplus structure at the heart of the account of numer-
ical representation. Uniqueness theorems are meant to identify the
invariant structure, thereby protecting us from drawing illegitimate
inferences based on representational artifacts.!!

Uniqueness theorems provide only a partial solution to this prob-
lem, however, as they only help us to understand how mappings to
the same numerical structure are related to one another. Uniqueness
does not provide any help in selecting the numerical structure in the
first place. The authors of RTM were well aware that not only are
different mappings of a phenomenon to the same numerical structure

""The term “surplus structure” (Redhead 2003) is more commonly used in the
philosophy of physics to discuss what, at least from the perspective of RTM, would
appear to be a related phenomenon, namely the presence of symmetries in physical
theories.

" There is a tight connection between the treatment of numerical representations
as structural representations and the use of invariance to test for meaningfulness.
RTM is here heir to the Erlanger Programme in geometry, which identified different
geometries using different transformation groups. See Narens [2002] 2012; Wolff
2020 for further discussion of this relationship.
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possible, but it is also often possible to construct a structure preserv-
ing map to a different numerical structure. For example, an ordered
set of lengths under concatenation will typically be represented using
an additive extensive structure, consisting of the real numbers under
addition, but it is equally possible to represent this empirical rela-
tional structure using the real numbers under multiplication instead
(Krantz et al. [1971] 2007, vol. 1, pp. 99-102).'? So, in addition to
containing arbitrary or conventional features, a particular numerical
structure is typically not uniquely suited to represent a given phe-
nomenon. Instead, a numerical structure has to be chosen as the
representing structure. Uniqueness theorems, then, do not provide a
complete answer to the problem of conventionality or arbitrariness of
numerical representations, as not all arbitrariness arises from surplus
structure. '3

6. How Successful is RTM as Semantic Foundations?

The choice of numerical structure is a manifestation of a more
fundamental objection to RTM’s strategy of semantically grounding
measurement: to describe a phenomenon as an empirical relational
structure is already to impose a certain way of conceptualising
and structuring the phenomenon. The structure itself is not empiri-
cally “given”. The concern here, I take it, is not merely that the em-
pirical phenomena typically underdetermine, which relational struc-
ture we should attribute to them, but rather, that the phenomena
themselves are structurable in a variety of ways, and that there is no
particular reason for thinking that one such structuring is preferable
over others. To say that the axioms hold of a particular phenomenon
is just to assert that the phenomenon has the requisite structure. As
van Fraassen puts it: “The metaphysical realist’s response depicts
nature as itself a relational structure in precisely the same way that
a mathematical object is a structure” (2008, p. 242). This concern
goes beyond the epistemic worry whether we can find out, using
empirical means only, what the relational structure of a phenomenon
might be, and instead questions whether phenomena can be said

2 Formally, the reason for this is that the binary operation characterised by the
axioms for additive extensive structures can be interpreted either as addition or as
multiplication (or indeed in a number of other ways), while preserving the axiomatic
structure.

3 Moreover, not all structures will have invariance properties that allow the appli-
cation of invariance as tests for uniqueness. See Narens [2002] 2012 for discussion
and for the development of alternative concepts of meaningfulness.
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to have relational structures at all. As van Fraassen develops the
objection, the problem is that, while it is clear what it means for
mathematical objects to be relational structures —this can be un-
derstood set theoretically, it is not clear how we should understand
the claim that concrete, material phenomena, such as some weights
and their behaviour on beam balances form a relational structure.
Sets, and relations on them, are abstract entities. To stipulate that
an empirical phenomenon has the requisite mathematical structure
is not to solve either the epistemic problem of finding out, what
that structure is, nor to solve the more difficult semantic problem of
connecting the phenomenon to its structural representation, let alone
the metaphysical problem of saying what it means for a phenomenon
to have a relational structure in the first place (and to have this
relational structure, as opposed to some other relational structure).

This objection challenges the claim to semantic foundations by
rejecting the idea that descriptive adequacy is even an eligible goal
for a numerical representation, at least if the description is meant to
adequately capture the structure of the phenomenon. That structure
is imposed, not only in the sense that we are prone to looking for
structure that will meet the axioms we would like to use in our rep-
resenting structure, but because it involves treating the phenomenon
as having a mathematical structure in the first place. This problem
goes deeper than the worry about alternative numerical structures,
because it questions the sense in which a structural representation
can relate a concrete, empirical phenomenon to an abstract, mathe-
matical structure. Van Fraassen seems to suspect that we are being
misled into thinking the semantic problem of representing empirical
phenomena using mathematics has been solved simply by stipulating
that the phenomena have the requisite mathematical structure. But
this does little to solve the original philosophical worry about the ap-
plicability of mathematics to empirical phenomena. If the structure
the phenomena are meant to have is simply mathematical struc-
ture projected back on them, this is hardly a solution. If so, RTM as
a semantic foundation of measurement would seem to have failed.

Is there a response on behalf of RTM as a semantic foundation
of measurement? It seems to me there is. A first important step is
to disentangle different aspects of the objection. First, there is the
observation that empirical phenomena are structurable in a variety
of way, an objection that finds support in the existence of alternative
numerical representations. Second, there is the concern that map-
pings from concrete phenomena into abstract structures are not well
defined or understood.
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The first point needs to be conceded but does not seem devastat-
ing to the semantic project of RTM. It is a problem for a certain
kind of (metaphysical) realist, who wishes to insist that there is a
unique structure in the phenomena that our representations must
aim to match.'* RTM’s semantic foundations need not adopt this
kind of realism but could settle for a more pluralistic view of which
representations are permissible. To retain a more modest realism, all
that is required is that the representation tracks some structure in the
phenomena, without laying claim to there being a unique structure to
be captured. Indeed, this pluralistic understanding of the structure
of a phenomenon fits well with the more pragmatic elements in RTM,
according to which the representing structures have to be useful,
with the implication that different uses might call for different repre-
sentations. More importantly, RTM’s contribution to clarifying this
problem is clear: we understand both representational conventional-
ity arising from equivalent mappings and representational conven-
tionality arising from different choices of numerical structure better,
thanks to RTM, even if not all representational conventionality is
due to surplus structure. We can now say that one variety of conven-
tionality arises as surplus structure, which determines the scale type,
while the other variety of conventionality is due to a different choice
of numerical structure.

The second objection is more problematic. There is a prima facie
concession, made explicitly by Suppes, who acknowledges that the
homomorphic mapping in fact holds between two abstract structures:
the empirical model and the numerical structure.’ If the homo-
morphic mapping constructed in the representation theorem holds
between two abstract structures, however, it might seem that RTM
does not even begin to offer semantic foundations. After all, we might
have expected such semantic foundations to offer an account of how
numbers are connected to the empirical phenomenon. Instead, it
seems, we have an account of how one abstract structure is related
to a different abstract structure. Insofar as there is a homomorphic
mapping of one to the other, what is represented is not an empirical
phenomenon, but another abstract structure. RTM seems to fail as

" Perhaps the most vocal and explicit contemporary defender of this form of

realism is Ted Sider (2011).

5 “[T]he concept of an empirical model used here is itself an abstraction from

most of the empirical details of the actual empirical process of measurement.
The function of the empirical model is to organize in a systematic way the results
of the measurement procedures used” (Suppes 2002, p. 4, n. 1, emphasis in original).
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semantic foundations on account of having lost traction with the
empirical world.

To see how we might respond to this worry on RTM’s behalf, it is
worth considering the traditional empiricist solution to the problem
of “tying” abstract representations to empirical phenomena: coordi-
native definitions. Unlike a linguistic definition, which defines one
linguistic term in terms of other linguistic items, a coordinative defi-
nition is meant to connect empirical phenomena or concrete entities
to abstract representations by stipulation. Most explicitly this can be
taken to be the case when defining a unit through an artifact, like
the former standard kilogram. The connection between the represen-
tation “lkg” and the world is explicitly stipulated. Critics of RTM
as a semantic foundation of measurement find either that RTM fails
to provide anything in the vicinity of coordinative definitions, or
worse, that RTM might seem to sidestep the problem by means of
homomorphic mappings, when such mappings are in fact insufficient,
because they link abstract structures to one another, not empirical
phenomena to numerical representations.

Interestingly, Suppes at least was not only aware of the idea of
coordinative definition, but rejected it as inadequate, for some of the
same reasons invoked by more recent discussions of coordination and
operationalisation: it’s more complicated than that. From his 1969
Models of Data (Suppes 1969) onwards, he made it clear that the re-
lationship between theory and world is complicated and mediated by
a whole hierarchy of models: “It is even a bowdlerization of the facts
to say that coordinating definitions are given to establish the proper
connections between models of the theory and models of the exper-
imental results” (Suppes 2002, p. 7). What is needed, according to
Suppes, is not a theory of coordinative definition, but instead a pre-
sentation of the statistical techniques used to interpret evidence, and
close attention to the various interceding models needed to connect
the experiential data to the high-level theory (if any).

This leaves us with a puzzle, though. If the homomorphisms de-
scribed by RTM hold between abstract structures, and the connection
between experimental data and high-level theory is so complicated as
to require mediation by multiple interceding models, then how do
our numerical representations become representations of particular
empirical phenomena? Neither homomorphism nor coordinative def-
inition seem to be up to the task. And consequently, if RTM cannot
provide an account of this connection, in what sense might we think
of RTM as semantic foundations?

DOI:https://doi.org/10.22201/iifs.18704905¢.2023.1409 Critica, vol. 55, no. 163 (abril 2023)



102 J.E. WOLFF

My proposal is that RTM provides semantic foundations because
it claims that what is being represented by numerical representations
is structure. RTM shows us, what numerical representations, and
measurement representations in particular, tell us about the phenom-
ena: they tell us something about the structure of phenomena, and
nothing else. Let’s unpack this a bit. If a numerical representation
is a representation of the structure of an empirical model, where an
empirical model is understood as a systematic organisation of the
measurement outcomes, then the numerical representation can only
tell us about the structure of these outcomes, not any of their in-
trinsic, non-structural features. This is not to say that a phenomenon
under measurement does not have any such non-structural features,
but these will not be included in the numerical representation. This
has important consequences, because the numerical representation
will be used in reasoning about the phenomenon in question. The
knowledge we obtain from measurement is hence structural, because
our numerical representations of measurement convey structural fea-
tures of the phenomena measured, and it is only (some of) these
structural features that may enter our inferences. This is a bold un-
derstanding of what measurement tells us about the world, and one
that is not especially clearly argued for in Foundations. Instead, a
structuralist understanding of numerical representation seems to be
presupposed, and the argument in its favour appears to be in terms
of the benefits we reap: look what we can do if we understand numer-
ical representations in terms of homomorphic mappings of different
types of uniqueness!

RTM then provides semantic foundations in a limited, but at the
same time revolutionary way. The foundations are limited, insofar
as they do not show us how to justify a particular numerical repre-
sentation of a phenomenon. This task is too much bound up with
the epistemic difficulty of determining what the structure of a phe-
nomenon might be, which suffers from severe underdetermination.
Instead, RTM provides a semantics of numerical representation as
structural representation, with sophisticated rules of engagement for
this kind of representation. A numerical representation is meant to
capture something about the phenomenon in question by being simi-
lar to the phenomenon, which is what enables us to reason indirectly
about the represented phenomenon, using numbers. RTM maintains
that this similarity is structural similarity. RTM investigates some of
the usage conditions for numerical representations as structural rep-
resentations, especially the conditions for “meaningfulness” of such
representations. The semantic foundations provided by RTM, then,
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are not primarily about reference —how do we get the numerical
representation to be about the phenomenon it represents, but rather
about inference— how do we ensure our indirect reasoning about the
phenomenon using a numerical representation is warranted.'®

This interpretation of the semantic foundations provided by RTM
also speaks to a third, related worry, namely that the existence of a
homomorphism is not sufficient for a representation relationship. The
problem is two-fold.!” Firstly, similarity lacks directionality, whereas
the representation relation has a direction. A represents B, but B
does not represent A. Secondly, the mere existence of a structural
similarity is not enough to establish any representational relationship
at all, regardless of direction. Many entities are structurally similar
in some way or another: mass and length can both be understood
as additive extensive structures, a pendulum and a mass on a spring
are both harmonic oscillators, and a palace and its reflection in a
pond are mirror images of one another. Arguably, none of these
are representations of one another.'® Something more than structural
similarity is required to establish the representational relationship.

Different suggestions are available for what the missing ingredi-
ent might be: agential intention, causation (Isaac 2013), self-locating
belief (van Fraassen 2008), and more. My goal is not to adjudicate
between these different options, but to point out that RTM does not
settle the matter. The problem these additions are trying to solve is
how a representation gets to be about what it represents. But this is
not the problem RTM solved when we understand RTM as semantic
foundations. Rather, RTM is aiming to solve a problem characteristic
of structural representation, namely that the representing structure
contains representational artifacts, which mustn’t be used when in-
ferring properties of the represented system from the representing
system.

16 This echoes the proposal that scientific models in general should be understood
along inferentialist lines (see Suarez 2004). Of course, I'm not claiming here that
RTM provides a full-blown inferentialist semantics for scientific models, or that there
is a clear connection to the inferentialist tradition in the philosophy of language
(Brandom 1998).

""The worry is articulated for similarity relations in general by Goodman (1976);
for a discussion of problems with isomorphic relations between scientific models and
the world, see Suarez 2003.

" On some views of natural meaning, the reflection in the pond does count as
a representation of the palace, because in addition to being structurally similar, it
is also caused by the palace (Isaac 2013). I take no stance on this issue here, as
even on this view, some relation over and above structural similarity is needed, viz.
causation.
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So, RTM provides semantic foundations, because it provides an
account of the species of representation numerical representations
are, namely structural representations. Such representations are suf-
ficiently different from familiar linguistic representations to warrant
an explicit account of the meaningfulness conditions for such rep-
resentations. The Foundations of Measurement offer invariance as
the criterion for meaningfulness. While this is not exhaustive as a
semantics for numerical representations, it provides a step change
in our understanding of numerical representations and what we can
infer from them. This is what makes RTM philosophically significant.

7. Conclusion

In this paper I've considered in what sense the representational the-
ory of measurement provides foundations, and what we should take
the philosophical significance of RTM to be. I concluded that RTM
fails to provide epistemic foundations of measurement and that, while
RTM does provide conceptual or formal foundations of measurement,
such foundations do not account for the philosophical significance of
RTM. I proposed instead to take RTM to deliver semantic founda-
tions of numerical representation. These semantic foundations focus
not on reference, but on inference. By treating numerical represen-
tations as structural representations, RTM brings into sharp focus
the problem of surplus structure in such representations. The philo-
sophical significance of RTM then lies in this semantic structuralism,
which invites an epistemic structuralism, according to which all we
can know through measurement is the structure of phenomena.'*%
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