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SUMMARY: Analog representations come in different types. One distinction is be-
tween those representations that have parts that are themselves representations and
those that do not (i.e., those for which the Parts Principle is true and those for
which it is not). I offer a unified account of analog representation, showing what all
types have in common. This account clarifies when the Parts Principle applies and
when it does not, thereby illuminating why the Parts Principle is less interesting
than one might have thought. Understanding analog representation instead requires
understanding the kinds of magnitudes used in a particular representation, and the
kinds of variation possible within a representational scheme.
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RESUMEN: Las representaciones analdgicas tienen diferentes tipos. Una distincion es
entre aquellas representaciones que tienen partes que son ellas mismas representa-
ciones y aquellas que no (es decir, aquellas para las que el Principio de Partes es
verdadero y aquellas para las que no lo es). Ofrezco una explicacién unificada de la
representacién analdgica, mostrando lo que todos los tipos tienen en comin. Esta
explicacién aclara cudndo se aplica el Principio de Partes y cuando no, y asi ilumina
por qué el Principio de Partes es menos interesante de lo que uno podria haber
pensado. Comprender la representacion analdgica, en cambio, requiere comprender
las clases de magnitudes utilizadas en una representacién particular y las clases de
variacion posibles dentro de un esquema representacional.
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1. Introduction

Analog representation and computation play an important role in
recent discussions in the philosophy of computation (Isaac 2018;
Papayannopoulos 2020; Maley 2023) and in the philosophy of cogni-
tive science, particularly discussions of perception and core cognition
(Carey 2009; Beck 2019; Clarke 2022). Nevertheless, basic questions
about the nature of analog representation have not yet been answered,
including what, if anything, unifies the various types of paradig-
matic analog representations. Consider two examples: a photograph
of waves in the Atlantic Ocean, and a mercury thermometer reading
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20 °C. While both are analog, they have been classified differently
by different theorists. The photograph counts as an iconic represen-
tation, often understood as a particular subtype of analog representa-
tion. The thermometer does not count as iconic, but an example of
what are sometimes called analog magnitude representations (AMRs).
What exactly is the difference between iconic and non-iconic analog
representations, and what makes both a species of the type analog?

Understanding the answer to these questions —or at least how
we might go about trying to answer them— may help shed light
on recent discussions about analog representations, iconic represen-
tations, and the so-called “Parts Principle”. According to the Parts
Principle, iconic representations have parts that are themselves rep-
resentations of what is represented by the whole (e.g., parts of a map
—a representation of some terrain— are themselves representations
of parts of that terrain). Carey (2009), for example, argues that the
AMR underlying elements of human core cognition has parts. On
the other hand, Peacocke (2019) and Clarke (2022) note that some
AMRs do not have parts at all, or only in an (at best) obscure way
that does not support the Parts Principle. And on the third hand,
Kulvicki (2015) argues that the Parts Principle is true of all analog
representations, once we amend what counts as a “part” in terms
of abstraction, rather than mereology. What then is the difference
between analog representations that have parts and those that do
not? Does having parts (or not) have any bearing on the type of
representation in question, or what can be represented?

Progress toward clarifying these issues can be made by doing
two things. The first task is to determine what the different types
of analog representation have to do with one another; I will do
this by extending and generalizing the account found in Maley 2011
and 2023. The second task is to articulate the conditions under
which any analog representation can be said to have parts; this
requires a discussion of extensive and intensive magnitudes. Showing
how the amended account then handles different types of analog
representation —iconic and non-iconic, with and without parts—
illuminates the dimensions along which they differ, while still having
the right kind of variation to be analog in the first place.

A few notes are in order before we begin in earnest. First, much of
the recent literature on analog representation has to do with its place
in contemporary cognitive science, but my aim is to elucidate the
nature of analog representation more generally. Whatever I say here
had better be compatible with how cognitive scientists understand
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analog representation; if it is not, then so much the worse for what
I say. Thus, my concerns (here, anyway) are not primarily with the
extent to which various human cognitive and neural systems use
analog representations, but with analog representation simpliciter.

Second, while it is still true that different accounts of what “ana-
log” means —particularly relative to “digital”— can be found in the
literature, the issues addressed here are only interesting for mirroring
accounts of analog representation. The alternative account of the ana-
log —the continuous conception— is, if not fatally flawed,! simply
irrelevant to this discussion. I will focus on a particular mirroring
account of analog representation (and, to some extent, computation)
developed in Maley 2011 and 2023, based on previous work by Lewis
(1971).

Third, although it is common use the term “content” for what is
represented by a representation, I would like to avoid this term. This
is simply because it comes with a decent amount of baggage from
its use in the philosophy of mind. At the same time, discussing “the
thing represented” is cumbersome. I will use the term “representa-
tum” for whatever it is that is represented by a representation.

Finally, I simply assume that some things are representations, and
that they represent other things. Nothing here is meant as a theory
of representation per se, but simply a characterization of already-
given representations. Thus, I will set aside the problem of represen-
tatum determination (i.e., the analog? of content determination) in
what follows.

2. Morphisms, Mapping, and Mirroring

The first thing we need to do is get clear on how to understand
“mirroring”. In this section, I will expand on a particular mirroring
account of analog representation, the Lewis-Maley account (Lewis
1971; Maley 2011, 2023), and the one most consistent with the au-
thors I will be engaging with later. Once we understand better what
the mirroring relationship is in simple cases of analog representation,
we can see how the idea generalizes to more complicated cases.

As a first step toward making “mirroring” more precise, one might
take the relationship between a representation (R) and what it repre-

'In particular, the existence of discrete analog representation and computation
is well-documented and acknowledged by most participants in this area. Continuous
accounts of the analog do not have the resources to make sense of what is, by their
lights, an oxymoron.

2 Pun intended, and really unavoidable.

DOI:https://doi.org/10.22201/iifs.18704905¢.2023.1411 Critica, vol. 55, no. 163 (abril 2023)



132 COREY J. MALEY

sents (S) to be an isomorphism: changes in .S are reflected by corre-
sponding changes in R. Lee, Myers, and Rabin (2022), for example,
take isomorphism to be the right relationship to characterize analog
representation, modulo some degree of deviation (e.g., if a mapping
is isomorphic except for one place, it is almost analog; a bit less for
two places, etc., in a way that can be quantified). Similarly, Burge
(2018) articulates an isomorphic view of specifically iconic represen-
tations. However, Shagrir (2022, p. 232) has noted that isomorphism
is too strong, for two supposed reasons. First, isomorphism is a sym-
metric relationship, but representation is asymmetric. The height of
the liquid in an analog thermometer represents the temperature, but
the temperature does not represent the height of the liquid. Second,
isomorphism is transitive, but representation is not. Thus, if the do-
main of R is isomorphic to S, and S is isomorphic to other domains
(which is virtually guaranteed), then R is isomorphic to these other
domains. This means that R not only represents .S, but all of the
other things to which S is isomorphic.

Shagrir is right to reject isomorphism as the way to characterize
analog representation (contra Lee, Myers, and Rabin (2022)), but for
the wrong reasons. Let us see why Shagrir’s concerns are unfounded,
which will then help clarify why we should reject isomorphisms in
favor of homomorphisms.

What we want is a characterization of the relationship between rep-
resentations and what they represent. This relationship is only impor-
tant in one direction, as it were: from representata to representations.
Thus, what we want is a function, or mapping, and not a relation.?
Let us call this function from representata to representations m; thus
m : S — R. Suppose for a moment that m is an isomorphism: thus,
every element of S maps onto an element of R, and every element
of R has some element of S that maps onto it. Furthermore, m is
structure-preserving, meaning that the structure of S is reflected in
the structure of R. In other words, one or more relations among the
elements of S are preserved when those same elements are mapped to
R. This will be specified in more detail later; for now, a simple exam-
ple suffices. If we have two temperatures ¢; and t2, where (1) < 2),
and two heights of liquid @ and b in a mercury thermometer, where
a represents {1 and b represents f2, then (a < b). The “less than”
relation among temperatures is preserved when the temperatures are

*We could also consider a function from representations to what they represent,
but it is simpler to consider them in the other direction.
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mapped to heights by the corresponding “less than” relation among
those heights.

Our mapping m is meant to capture the fact that temperatures
(elements of S) are represented by heights of liquid (elements of
R), and relationships among the magnitudes of the temperatures are
reflected in relationships among the magnitudes of heights. However,
the fact that m is isomorphic does not mean that the mapping goes
in the other direction, such that temperatures represent heights of
liquids; that is simply not the way that this mapping is defined. The
function m is from representata (i.e., temperatures) to representations
(i.e., heights). Now, there exists an inverse mapping that goes the
other way, mapping heights to temperatures. However, that is simply
a different mapping, and not one we are concerned with.

Similarly, there are isomorphic mappings from many other things
to temperatures, such as the unread books on the shelves of a uni-
versity’s library, or from the ounces of coffee I drink every day. Let
us call the function from unread books in some particular library to
temperatures n; let us suppose it, too, is isomorphic. Thus, the func-
tion n maps book-counts to temperatures, and m maps temperatures
to liquid heights. Does that mean that liquid-heights then represent
book-counts? No. We could compose the functions m and n to create
yet another function mapping liquid-heights to book-counts. But the
mere fact that the function m is isomorphic with n does not imply
any transitivity of representation.

In short, there has been some confusion about what follows from
the fact that a function is isomorphic. Given an isomorphic mapping
like m, we know that there must be an inverse mapping. But that does
not mean that m itself is symmetric; in fact, that is a category mistake.
Relations, such as less-than or equal-to, are candidates for symmetry
(as well as transitivity, reflexivity, and the like). The fact that some
symmetric relation holds between h and j necessarily means that it
also holds between j and h. Functions, however, are not relations.

We can now see that these concerns about characterizing repre-
sentation in terms of isomorphic functions are unfounded. Howev-
er, there are two other, separate problems with isomorphisms. First,
there is a point made by Krantz et al. (1971):* an isomorphism
strictly implies that if y and z represent the same thing, then y
and z must be numerically identical. For example, suppose y is a
representation of the number five by some length, say in a slide rule;

*This point was made in the context of the representational theory of measure-
ment, parts of which will be relevant below.
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z is also a representation of five by a length in a slide rule. We do not
want it to follow that y and z must be the very same lengths of the
very same slide rule. Rather, we want it to be the case —or at least,
possible— that y and z are parts of different slide rules that happen
to have the same length. But this is simply not allowable under a
one-to-one mapping.

The other problem is that isomorphism does not adequately cap-
ture many clear examples of analog representation. Recall again our
function m : S — R. It is a one-to-one mapping, meaning that every
element of R maps onto an element of .S, and every element of .S has
some element of R that maps onto it. Now, consider the second hand
of an analog watch that ticks in discrete steps, once per second. Here,
R is a set of points in time, and S is the set of 60 positions of the
watch face.

If we insist that the mapping must be an isomorphism, as in Lee,
Myers, and Rabin 2022, then the cardinalities of R and S will have to
be the same. The cardinality of R is fixed: there must be 60 elements,
one for each position of the discrete, ticking second hand. Thus, S
will have to have 60 elements as well. But this is a bit strange: we
know that time itself is not broken into discrete, one-second units;
that is simply a convenient way we measure and represent time for
many everyday purposes. So what are the units of time? This is an
empirical question (or so I suppose), and one whose answer is not yet
settled. From what I understand, one candidate is the Planck time
constant, roughly 5.34x10~*s. Or, perhaps time is really continuous,
not divisible into units in the way it would be if it were discrete. In
either case, there are going to be many more elements in S than in
R, and from that it follows that there simply can be no one-to-one
functions, and thus no isomorphic functions from R to S.

There are two solutions, each of which involves grouping together
sets of times. First, rather than mapping individual units of time
(elements in S) to individual representations (elements in R), sets of
times (sets of elements in S) could be mapped to individual represen-
tations. For simplicity, suppose we consider all of time between two
ticks as being represented by the “lower” or “first” tick. All times
between the 15th and 16th tick of the dial will be mapped from
the 15th tick. So the actual time (as it were) of 15.23...seconds
is represented by the hand being at the 15th tick mark (however it
happens to be labeled, or even not labeled, as on a blank watch face).
If that is unsatisfactory, instead of rounding up, we could round to
the nearest whole number. Thus, we could map all times between
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14.5 seconds and 15.5 seconds to the 15th tick mark. In any case, we
must map sets of times to individual representations.

Rather than an isomorphism, this function would be a homomor-
phism: it is not one-to-one, but many-to-one. The difference between
the two is visualized in Figure 1. Every element in R represents
some set of times, shown by the sets in S mapped to individual
elements of R. This may seem to introduce some ambiguity because
it suggests that each position of the second hand simultaneously rep-
resents a huge number of individual times, which is counterintuitive.
However, the solution is straightforward: take the sets of elements
mapped onto a single representation as an equivalence class. After
all, for the everyday purposes for which we use the second hands
of clocks, it is usually fine to treat all of these times as more-or-less
equivalent. When they cannot be so treated, we simply use a clock
with a higher resolution: perhaps a stopwatch that measures times in
milliseconds. In this case, R has 60,000 elements instead of 60, and
the equivalence class will consist of times that are much closer to one
another, but otherwise the idea is exactly the same.

s A Se | =" Se [

Figure 1. Generic mappings of an isomorphism (left) and homomorphisms
(center and right).

The second solution is to consider the sets of times in S as the
thing to which elements of R are mapped. Thus, the elements of
S are themselves sets of individual times, which each of which is
mapped to an element of R. This may have the benefit of preserving
the idea that a given representation has only one representatum.
After all, we typically take the second hand pointing to the numeral
“3” (or “III”, or at a 90-degree angle from vertical in the clockwise
direction, or whatever) on a clock to represent 15 seconds full stop;®

5 Of course, we mean 15 seconds after some reference time, a detail that we can
ignore for expediency.
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not simultaneously 15 seconds, 15.2 seconds, 14.9 seconds, 15.06
seconds, and so on. Thus, it might be better to stipulate that .S is an
isomorphism after all: S would have exactly as many elements as R,
so that the second hand in the example represents the set of times
that includes 15 seconds.

The difference between these two solutions is subtle, and it is not
clear which is to be preferred —perhaps different ones are better in
different contexts. In any case, with discrete analog representations
such as these, it is important to make clear that representations with
different resolutions can represent the same thing. A stopwatch
with single-second resolution represents the very same thing as
one with a thousandth-second resolution. Moreover, that resolution
is not a property of what is being represented, but of the type of
representation we are using. Time is whatever is, whether continuous
or discrete; but we represent it (at least sometimes) with the discrete
ticks of a clock’s second hand.

These considerations should make it clear that isomorphism is
not enough to capture many analog representations; we need some
way of capturing many-to-one mappings in these two different ways.
Using homomorphisms, rather than isomorphisms, works perfectly.
However, more than mere mapping is required for a morphism:
there must be a preservation of structure. To illustrate, if we take
literally the vertical arrangement of the elements in Figure 1, there
is an “above” relation among those elements. So, for example, r
is above r9, which is above r3, and so on. Same for sy, s2,... As
it happens, this relation is asymmetric, transitive, irreflexive, and
—most importantly— preserved in the mapping from S to R. In
other words, let the element r € R that a given element s € S maps
onto be denoted by m (s) = r. Let us use 1 to denote the relation “is
above” (e.g., s1 T s2, 11 T ro, etc.). The function m is a homomorphism
in virtue of the fact that, if s; T s;, then m (sj) T m(sp), ie, i1 T ra.
In real examples, the relation of interest between elements of .S will
be a relation among a physical property of the elements of S. More
about this will be said below.

3. Dimensions of Representations

In a recent paper on analog computation and representation, Maley
(2023) characterizes analog representation as follows:

A representation R of a quantity () is analog (with resolution r)

iff:

Critica, vol. 55, no. 163 (abril 2023) DOI:https://doi.org/10.22201/iifs.18704905¢.2023.1411



ICONS, MAGNITUDES, AND THEIR PARTS 137

o there is some property P (the representational property) of R
such that the physical quantity or amount of P specifies (; and

e the quantity or amount of P is a monotonic function f of ),
and that function is a homomorphism from  to P. Further-
more, let Py and Py be values of P that represent quantities
Q1 and Qs, respectively. If [Py — P3| > r, then (without loss of
generality) stipulate that Py < Py (that is, let Py be the smaller
of the two). In the case where f is monotonically increasing
(non-decreasing), then (; < (z; if f is monotonically decreas-
ing (non-increasing), then Q) > Q. However, Q7 < (s only
implies P; < Py for monotonically increasing f, or P; > Ps for
monotonically decreasing f.

In plain English, the idea is that the property of a representation that
is doing the representing increases/decreases as the representatum in-
creases/decreases. Of all the properties of a liquid thermometer, it is
the height of the liquid that does the representing. Moreover, the [iz-
eral increase/decrease in that height represents an increase/decrease
in temperature (i.e., monotonic covariance between representation
and representatum). A liquid height of 34 mm that represents 34 °C
is literally taller (i.e., larger in magnitude) than a height of 33 mm
that represents 33 °C (and, of course, 34 °C is larger in magnitude
than 33 °C). This is in contrast to, for example, digital representa-
tion, where the physical properties of the digits involved need not
monotonically covary at all. In a digital thermometer, a LED display
of the two digits “33” is no bigger, smaller, taller, or anything else
than the two digits “34”: they are simply different. Of course, they
could be larger, taller, or whatever, in some particular scheme; but
that is not a necessary part of digital representation. All that’s needed
is that the symbols differ in ways we can interpret according to the
conventions of digital representation (this is discussed in more detail
in Maley 2011).

This is all fine as far as it goes, but, like mirroring, it can be made
clearer. How can we best understand “covariation” between analog
representations and their representata? In other words: with respect
to what is it that they vary? With an answer in hand, we can see one
way in which different kinds of analog representation are, in fact,
unified; later, this will help us to understand how the “Parts Princi-
ple” does and does not apply to different analog representations.

Let us focus again on the liquid thermometer, even more closely.
As just mentioned, these thermometers represent temperature by
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the height of a liquid in a narrow glass tube. More specifically,
they represent the temperature at the tip of the thermometer, a
particular point (or very small volume, anyway) in space. When we
say that the height (the representation) varies monotonically with the
temperature (the representatum), we mean the temperature at that
point. Moreover, when we say that the temperature varies, we mean
that it varies, at that point, with respect to time. We could move the
thermometer around; we could keep it in one place. In either case,
as time passes, any increase in temperature at that point will result
in an increase in liquid height. If we were to plot these increases on
the same graph, we would get something like Figure 2.

Figure 2. Temperature increases and height increases with respect to time.

A graph like the one in Figure 2 would typically be most useful
if the temperature being displayed were the temperature at a fixed
location; showing, for example, the effects of a heat lamp turning
on and off in a laboratory setting. If the displayed temperature is
from a thermometer that is being moved around as time passes, this
graph would need more information to be useful. In any case, it is a
certain point on the thermometer that varies in height, according to
the temperature, as a function of time.

Although T am hesitant to introduce more terminology, it does
help to make clear how precisely analog representation works. There
are three components worth tracking. First, we have the represen-
tatum, which we can also think of as a dependent variable —it
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is the thing that varies, and the thing that is to be represented in
the first place. In this example, it is temperature. Second, we have the
representation, which is the thing that represents the representatum;
in this example, the height of the liquid. Finally, we have an in-
dependent variable: whatever it is such that, with respect to it, the
representatum, and thus the representation, vary. In this case, the
independent variable is time. The plot of the variation in the repre-
sentation and representatum in Figure 2 are precisely variations with
respect to time.

In the case of this analog thermometer, this is all quite obvious
once we go to the trouble of laying it all out; it is not yet clear what
all that trouble is worth. More will come in the next section, but
for now, showing how different types of analog representation fit this
tripartite scheme makes clear how these different types are actually
unified in a non-obvious way. Let us look at another example.

Consider an hourglass, an analog timer. Here the representatum
is time, and the representation is the amount of sand. We could
plot this as well, but it would be rather boring: both the repre-
sentation and representatum would be straight, parallel lines (with
some positive slope). Why? Because in this case, the representatum
varies constantly, and the representation correlates linearly with the
representatum. But what exactly is the independent variable in this
case? That is, with respect to what does the representatum, and hence
the representation, vary? Odd as it initially sounds, in this case, the
independent and the dependent variable —the representatum— are
the same: time. After all, as the amount of time elapsed increases,
so does the amount of sand in the bottom of the hourglass. In this
case, however, we are treating the independent variable as the thing
to be represented, and thus it is also the dependent variable. It does
not seem correct to say that we are representing time with respect to
time; so let’s not say that.® We will simply say that our independent
and dependent variable are the same.

Both of these are examples of what we might call one-dimensional
representations. We have one independent dimension, and one di-
mension of what is represented (the representatum). Variation in the
representatum is a function of the independent variable (which is
what allows plots like Figure 2 to make sense at all). Let us look at
two more examples before moving on to two-dimensional representa-
tions.

® Perhaps there is something in this neighborhood that would be correct, but I
will leave that to the philosophers of time.
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Electronic analog computers typically represent the values of vari-
ables by the voltage across some circuit element. So, seven is repre-
sented by seven volts. This is in contrast to electronic digital comput-
ers, where one of two voltages (typically zero and five volts) represent
one of two binary digits (0 and 1), and the sequence of these digits
represents the value of a variable (Maley 2011, 2023). In one sense,
an analog element is much like the thermometer from above: as the
representatum increases (or decreases), the representation increases
(or decreases), and that variation happens across time. There are
two important differences, however. First, unlike the thermometer,
the value of the representatum is not determined by sensing some
property of the environment: it is an element of a computational
system, set by either the user of the system, or some other element
of that same system.” Second, the representatum need not have any
units: it may be that a value of seven volts represents the number
seven (and not seven meters, seven kilograms, etc.). In fact, even if
there are units involved in a particular problem (e.g., a computation
is being performed to determine the average mass of a set of objects),
it is clearer to maintain that the elements in the computer represent
numbers, and those numbers represent (for example) the number of
kilograms in the problem. That is a subtle issue that we need not
resolve here.?

Finally, consider a vinyl record (to keep things simple, we will only
consider a monophonic record; stereo records are essentially just two
monophonic records played simultaneously, one in each channel).
Records represent sound by the physical variation in the peaks and
valleys (the heights and “frequencies”) of the groove.” The needle
vibrates as it contacts these peaks and valleys, and that vibration
is amplified to produce sound. The peaks and valleys are nearly-
linearly correlated with the peaks and valleys of the sound that has

" There are other possibilities: it could be an input from a sensor, and thus just
like the thermometer; it could be set by some other system entirely. The important
point is that it is not, in general, dependent on an external property the way that
the thermometer is.

8 The essence of the issue is that, strictly speaking, mathematical operations are
only defined on mathematical objects, and although we are familiar with what it
means to “add” 50 kg to 60 kg, that is a particular physical interpretation, peculiar
to how we “add” masses. Different types of physical magnitudes will have different
physical interpretations of mathematical operations, and some will have none at all.
Thus, it is simpler to keep straight that what the computer represents are numbers,
with well-defined mathematical operations.

? Although it is common to talk about the grooves in a record, it is really only a
single groove in a long spiral.
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been recorded, so much so that one can “play” a record with only a
pin taped to a cone of rolled-up paper: no fancy decoding equipment
is necessary, as in the case of a digital recording. Now, this repre-
sentation is a bit complicated, because although the representation
and representatum vary with time, they are also only defined over a
duration. In other words, a note such as middle C has a frequency of
261 Hz, but there is no note without at least a small duration of
time. However, we can set this complication aside, and refer to
an instantaneous frequency if need be, the same way we can refer
to instantaneous speeds.

So much for one-dimensional representations: let us look at two
dimensions. A canonical example of a two-dimensional analog repre-
sentation is a photograph; for simplicity, let us start with black-and-
white ones (more properly, greyscale). In this type of representation,
there are two independent dimensions of variation (the two spatial
dimensions of the photograph), and one dimension of what is repre-
sented.'” So, to be clear, the representatum is an image, the represen-
tation is the photo, and there are two independent dimensions. Like
the one-dimensional cases, this seems like a clear case of a mirroring
relation. But how can we extend the one-dimensional case so that it
works for this kind of analog representation?

Like the one-dimensional case, we have to think about variation
along the independent variable —except now there are two of them.
At any point in the photo, the grey level at that point represents
the grey level at the corresponding point in the representatum. If
we move in either the up-down or left-right direction (i.e., the two
dimensions of variation), an increase/decrease in the gray-level of
the representatum will be represented by an increase/decrease in the
grey level at the corresponding point in the representation (i.e.,
the photograph). In fact, we could move in any combination of the
two dimensions of variation: we need not move only up-down or left-
right. Moreover, we can plot the grey levels of the representatum and
the representation as we move in some direction just as we did for
the thermometer; this is depicted in Figure 3.

19 Color photographs are to greyscale photos as stereo records are to monophonic
ones —we can think of color instead of greyscale by three (RGB) or four (CMYK)
separate variations instead of just one (grayscale). Or, if you like, a vector of three
or four elements, instead of just a scalar.
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Figure 3. Photograph of waves, depicting actual waves. Zooming in on a
small line segment shows how we can move along the independent vari-
able(s), and get covariation between what is represented (the gray levels of
the waves) and the representation (the photograph).

When we make explicit the dependent variable (the representatum)
and the representation, we see that the representatum and represen-
tation are of the same type. What we are representing is the gray
levels of the waves as seen from some particular point of view. How
we are representing these grey levels is via the grey levels of points
on a photograph. Now, these may or may not be the very same
gray levels; in fact, they are probably not. But we are representing
color by color (or brightness by brightness in the greyscale case). A
different kind of two-dimensional analog representation could instead
represent brightness by the heights of a surface, so that lighter colors
are higher than darker colors.

Also, notice that in the graph on the right side of Figure 3, the in-
dependent variable is not time, but the change in location for the
left-right spatial dimension. Additionally, the line graph of the vari-
ation in the gray levels of the image and in the photograph are
depicted as smooth curves just for convenience; because there are in-
dividual pixels, the actual graph would be a discrete step function.

Other examples of two-dimensional analog representations include
maps and plots of functions of two variables. Of course, maps of-
ten include non-analog information, such as arbitrary color-coding to
convey differences in types of roads, but they are still fundamentally
analog. Additionally, there are still higher-dimension analog represen-
tations. A movie of waves, for example, would have three dimensions
of variation (two spatial dimensions and one time dimension), and
thus be three-dimensional. A scale model would have three spatial
dimensions of variation, and thus also be three-dimensional, but in
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a different way. A 3D-animation of a storm over time would be a
four-dimensional representation (three spatial and one time dimen-
sion). We need not walk through each of these examples; the point
is simply that the basic structure of analog representation applies to
each of these, and what counts as variation in the different types of
representation is made clear when we carefully track the dimensions
of variation in each.

What about the structure-preserving aspect of multidimensional
analog representation? This aspect generalizes from the one-dimen-
sional case, too —we simply need to think of the relevant homo-
morphisms across multiple dimensions. Like other elements of this
analysis, the fact that this happens so readily in everyday examples
makes the precise characterization seem tedious. However, the te-
dium will be useful.

Consider the photograph, which we just noted has two indepen-
dent dimensions and a single dependent one. We have already dis-
cussed the covariance between the points on the photograph and
the points of the image: the lighter-darker relation that holds among
the greyscale levels of the image is preserved in the lighter-darker
relation among the greyscale levels of the photograph. However, the
spatial structure of the points in the image is also preserved in
the spatial structure of the points in the photograph. Suppose we
have two points, p; and py in the image, represented by points ¢;
and ¢p in the photograph. If p; is above ps, then ¢; will be above g.
The structure is two-dimensional, however, so the same will be true
if we replace “above” with “left of”. The idea is intuitive enough,
but perhaps worth illustrating a bit more.

As in the case of the thermometer, we have a homomorphism be-
tween the representatum and representation, mapping grey levels to
grey levels, and which preserves the darker-lighter structure. In addi-
tion, we have a homomorphism between points on the representatum
and points on the representation. It is most natural to think of these
in terms of two two-dimensional grids, where points are mapped to
each other in just the way one would expect.'! In this case, there
are two separate relations that are preserved: the above-below rela-
tion and the left-right relation, exactly as mentioned above. Thus,

"' There is a technicality here if we adhere to a strict mathematical notion of
homomorphism, which is that we would need a separate mapping to capture each
relation to be preserved. That is implicit in the two-dimensional grid illustration,
which is a clearer presentation than the two separate lists with two separate mappings
that would be required to be mathematically strict. Formally, however, this is a
trivial change.
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we have the preservation of three separate relations: the light-dark
relation of the points of the image, and the spatial structure of those
points. This is illustrated in Figure 4.
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Figure 4. Homomorphism between image points and photograph points
(left) and between spatial location of those points (right). Only a few arrows
are shown on the right for clarity.

One might wonder why we had only one relation to preserve in
the one-dimensional example of temperature, but three in the two-
dimensional case. Why did we add two additional relations, but only
one dimension? In fact, in the one-dimensional case, there really are
two separate homomorphisms preserving two separate relations, but
we did not make it explicit. The independent variable in that case
is temporal structure instead of spatial structure; we assumed that
the time at which a thermometer indicates a particular temperature
corresponds to the very time at which it is that temperature. For
most purposes, this is a fine assumption, not worth making explicit.
However, for other purposes, it may be good to make this ex-
plicit. For example, thermometers do not instantaneously change
when temperatures change: it takes some amount of time for the
liquid (or whatever) to physically move to the right place. If the
temperature suddenly increases sharply, it may take a few seconds
for the thermometer to reflect that change. Thus, it would not be
correct to say that the point in time at which a thermometer in-
dicates a temperature correspond to the very same point in time
at which it is that temperature: some delay will be needed, which
could be reflected in the appropriate homomorphism. Nevertheless,
the structure of points in time (i.e., the “earlier than” relation) will
be preserved.

Once again, the idea here can be generalized to more dimensions:
three spatial dimensions are preserved in scale models; two spatial
and a temporal dimension are preserved in animations. In fact, there
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is a strong case to be made that, understood in this way, the class of
representations commonly known as “structural representations” are
nothing more than analog representations. However, fleshing out this
idea will have to be a task for another time.

One final point should be made about static analog representa-
tions, such as bar graphs, which do not vary at all.!? In a bar graph,
some value is represented by the height of a bar; however, these are
typically static images, so there is no variation. It might seem that
the analysis provided here cannot be applied to such a case. A full
treatment would take us too far afield, but the basic idea is that
the variation is counterfactual: if the value would have been higher,
then the bar representing the value would have been taller. In fact,
we cannot understand any single representation as analog without
considering what it would do if the representatum were to vary. If
we have stipulated that a particular bar graph is an analog repre-
sentation, then it cannot be the case that, were the representatum
to steadily increase, the height of the bar would change in arbitrary
ways. If it is analog, then the height of the bar would increase as the
representatum increases.

The last two sections have spelled out, in some detail, what
makes a given representation analog, and what higher-dimensional
analog representations —which may be what other call structural
representations— have in common with simple one-dimensional rep-
resentations. Besides adding some precision to our understanding of
analog representation, this account allows us to get clearer on the
different notions of “parts” of analog representations, the subject of
the next section.

4. Parts of Analog Representations

Some analog representations have the interesting feature that their
parts are themselves representations: those parts represent parts of
what was originally represented by the whole. One can take a pho-
tograph of a cat, cut out a part that contains just the ears, and
then have a photograph of the ears of that cat. This is not true of
representations in general: the “w” in “Antwerp” does not represent
some part of the city, and none of the three lines that are part of
“m” represent anything at all. Moreover, this feature is not true of all
analog representations either: the height of the liquid in an analog
thermometer represents temperature, but a part of that liquid does

"2 Thanks to an anonymous reviewer for this example.
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not represent part of the temperature. But for iconic analog repre-
sentations, this feature is taken to be necessary (Clarke 2022). We
can codify this feature, often called the Parts Principle, as follows:

The parts of an analog representation of .S are representations
of parts of S.

In this section, I will make clear, in a principled way, why certain
analog representations admit of the Parts Principle and others do
not. By illustrating a difference in the types of magnitudes involved
in analog representations, we will see that the Parts Principle may not
be that important after all. As Clarke argues, what matters more is
that we are clear about analog representation more generally, whether
iconic or not (Clarke 2022, p. 16). First we will see that the types
of magnitudes involved determine whether the notion of “part” is
applicable at all. Then, using the discussion of dimensions of vari-
ation from above, we will see how considering different types of
magnitudes applies to the different ways a given representation can
be partitioned.

The core of analog representation is the “representation of magni-
tudes, by magnitudes” (Peacocke 2019, p. 52). While true, it turns
out that not all magnitudes are created equal. The extensive magni-
tudes roughly correspond to physical quantities: length and mass are
examples. The intensive magnitudes roughly correspond to physical
qualities: temperature and color are examples. Kant was perhaps the
first to make this distinction explicit, and in fact formulated extensive
magnitudes as those “in which the representation of the parts makes
possible the representation of the whole,” (Kant 1988, p. A162/B203).
This is nearly the Parts Principle, except Kant was speaking of the
mental representation of extensive magnitudes, rather than represen-
tations using extensive magnitudes. However, the combining of parts
is essential in both cases.

Extensive magnitudes are thought to have two closely-related fea-
tures. First, there is way of physically “adding” magnitudes. What
this means is that, given two magnitudes with values v and w, there
is a physical operation that corresponds to mathematical addition,
which means that the result of the operation is a magnitude of
(v+ w). For instance, a length of 33 mm can be added to a length
of 34 mm in the obvious way: concatenating the lengths, resulting in
a length of 67 mm. Second, extensive magnitudes can be partitioned
in ways that correspond to an intuitive notion of parts. A length of
67 mm has, as parts, 33 mm and 34 mm lengths (as well as infinitely
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many other partitions of lengths). Mass can be treated similarly:
masses can be added and divided in obvious ways. It seems that the
ability to be partitioned goes hand-in-hand with the ability of parts
to be physically added; we will return to this point below.

Non-extensive, or intensive, magnitudes are those for which there
is no physical addition operation, and which do not have parts. Tem-
perature is one example. Take two objects (or substances, or what-
ever) with temperatures e and f; in general, no way of combining
them will result in something with temperature (e + f)."* Further-
more, a temperature of, say, 20 °C does not have temperatures 15 °C
and 5 °C as parts. Other examples of intensive magnitudes include
density and hardness, which also do not admit of either partitioning
or physical addition.

Noting this difference between extensive and intensive magnitudes
makes clear why certain examples in the literature on analog and
iconic representation do or do not admit of the Parts Principle.
Carey (2009) uses the example of line length as an analog magni-
tude representation. Length is extensive (thus having parts, as just
mentioned), and Carey concludes that representation by magnitudes
is, in general, enough for Parts Principle to hold. Clarke (2022) notes
that other magnitudes, such as speed, do not have parts, and thus it
is too hasty to generalize from length. Speed is, of course, intensive:
a speed of 45 m/s does not have 20 m/s (or any other speed) as parts.
Peacocke (2019) makes a similar point, noting that representation by
the firing rate of a neuron would also falsify Carey’s general claim. A
neuron firing at 70 Hz does not have 10 Hz as a part —not even as
a temporal part, as Peacocke notes. This is because frequency is an
intensive magnitude.

Thus, the points made by Clarke and Peacocke can be generalized.
Rather than examining individual cases, such as speed and frequency,
we can state that, in general, Parts Principle holds for analog rep-
resentations that use extensive magnitudes, and it does not hold for
analog representations that use intensive magnitudes. Suppose I want
to represent the number of days elapsed since my last birthday. Rep-
resenting that quantity by a length of string in inches will result
in an analog representation that has parts: each inch represents one
day. Representing the same quantity by the temperature of water in a
coffee mug will result in an analog representation that does not have

3 Of course there are special circumstances for which there are exceptions: one
can combine two glasses of water, both at 0 °C.
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parts: the temperature increases as the number of days increases, but
there is no such thing as a part of a temperature.

We can further generalize this point to represented magnitudes.
Suppose we represent an intensive magnitude with an extensive mag-
nitude: a liquid thermometer is a common example. We have then an
interesting case: our representation has parts, but our representatum
does not. A column of mercury has a height, and height is an ex-
tensive magnitude —we can partition the height however we’d like.
However, because temperature is intensive, it does not have parts.
So what do the parts of the representation represent, given that the
representatum does not have parts at all?

The simplest answer is that the parts of the representation do
not represent anything. To be sure, a part is what the representatum
would be if that particular part were considered as a whole. Similarly,
they have the value that determines what the resulting representatum
would be if that part were added (or subtracted) from the whole
representation. This is somewhat subtle, so an example is helpful.

Suppose a thermometer with a liquid height of 70 mm represents
70 °C. The representation —the height of liquid— can be parti-
tioned in any number of ways, but let us consider a part with height
10 mm. It may be tempting to say that this part represents part of
the temperature: 10 °C, in particular. But because temperature is
intensive, it has no parts, and thus this cannot be right. However,
the 10 mm part is a representation of what the liquid height would
be if the temperature were 10 °C. Further, the 10 mm part is what
would need to be added to the 70 mm representation to represent an
increase in temperature by 10 °C.

In short, while intensive magnitudes do not have parts, they can be
represented by extensive magnitudes that do have parts. Although
those parts cannot be said to represent the parts of the representatum
(because there are no such things), those parts can be understood as
the kind of thing that can be added and subtracted in order to
represent other values of the representatum.

The reverse situation —using an intensive magnitude to represent
an extensive one— is not only possible, but common. Real-world
examples are found in neuroscience, where an extensive magnitude,
such as weight exerted on a muscle, or the angle of a joint, is
represented by a neural firing rate. In these cases, as the relevant
part of the stimulus increases, the firing rate of the relevant neuron
(or group of neurons) increases. As Peacocke states explicitly, neural
firing rates are intensive: “A firing of fifty times per second does not
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have a firing of seventeen times per second as a part (not even as
a temporal part)” (Peacocke 2019, p. 58). Nevertheless, a firing of
fifty times per second may well represent a mass of 50 g, or an angle
of 50 °. We then find ourselves in a similar situation as above, but
reversed: the representation has no parts, but what is represented
does. What can thus be said about the firing rate of seventeen times
per second, given that it is not a part of fifty times per second?

Again, while it is true that no sense can be made of the idea
that frequencies have parts, we can make sense of the relationship
between a frequency of one magnitude (e.g., 17 Hz) and another
(50 Hz). This is just the frequency that the neuron would fire if the
represented quantity were 17 g (or 17 °). It is also the decrease in
the magnitude of the representation were the represented magnitude
to decrease by 17 units. Or, equivalently, it is the amount by which
the representation would decrease if a 17-unit part were taken away
from the representatum.

We can now see exactly where Parts Principle applies and where
it does not. When magnitudes are extensive, the magnitudes have
parts, so when we have an extensive magnitude representing another
extensive magnitude, then Parts Principle applies, and we have a
clear case of iconic representation. When one or more of the mag-
nitudes involved are intensive, then those magnitudes do not have
parts, and the Parts Principle does not apply, and the representation
in question is not iconic. However, as we see from the cases above,
it is not clear why this matters. For those cases in which one of the
magnitudes involved does not have parts, we can nevertheless make
sense of what smaller (or larger) magnitudes are in the context of
analog representation.

Things get more complicated in one sense, yet simpler in another,
when we note that the distinction between intensive and extensive
magnitudes is neither exhaustive nor basic. One could easily use mag-
nitudes that are neither intensive nor extensive, such as the square
root of mass. Square roots of masses can be combined, but the result
does not map to addition, but neither does the combination amount
to no change at all (as it would for say, color or temperature). More
interestingly for our purposes, some magnitudes do not have parts
in any intuitive sense, and thus may seem intensive, yet do admit of
physical addition. Voltage is such a magnitude: 5 V does not have
2V and 3 V as parts, but one can easily add 2 V and 3 V in a series
to obtain 5 V. Moreover, whether the addition of voltage acts in an
intensive or extensive way is context-dependent. As just mentioned,
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voltages added in a series combine in an extensive way; yet when
added in parallel, they do not (as illustrated in Figure 5). Electrical
current, however, is exactly the opposite: it is intensive in a series,

but extensive in parallel (Redlich 1970).

9V

milllse

Figure 5. Physically adding voltages in parallel (left) and in series (right).
With a 9 V battery, the voltage across parallel elements (here, resistors) is
the same as the voltage across the battery: voltages do not add. Voltages
across elements in a series, however, sum to the voltage of the battery:
voltages do add in this case.

The moral here is that we can make sense of which analog repre-
sentations have parts (and why) by tracking which magnitudes are
extensive, but that it may not matter whether smaller magnitudes
are really “parts” in a strict sense, given that we can make sense
of what smaller magnitudes are relative to other magnitudes. The
point just mentioned about the complications regarding the inten-
sive/extensive distinction pushes the point further still: what matters
most is not whether magnitudes have parts, nor whether they are in-
tensive or extensive, but whether there is an interpretation of smaller
magnitudes that work as if they were parts.

Finally, considering the types of magnitudes involved in analog
representations in the context of the dimensions of variation discus-
sion from section 4 helps us get a grip on what parts of particular
representations could be in multidimensional cases. For example,
consider a photograph, this time in color. A part of a photograph is
simply a subset of the whole photograph —a restriction of its height
and width— illustrated in the top of Figure 6. Height and length are
themselves extensive magnitudes, so it is perfectly clear what a part
of a photograph would be along these dimensions. On the other hand,
the colors that constitute the dependent variation are not extensive
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—they do not have parts, and we cannot take restrictions of this
variation as parts of the original photograph.

Figure 6. Top: Original photograph on left, and a part of it on the right,
obtained by taking subsets of the independent dimensions of variation.
Bottom: Subsets of the dependent variable result in the red, green, and
blue elements of individual pixels.

However, we can understand what it would be to take certain re-
strictions on the dependent dimension of variation —the colors of
the points. For instance, from an original photograph, we could cre-
ate three new representations: one for each of the red, green, and
blue values of the individual points; examples are illustrated in the
bottom of Figure 6. Because color is not extensive, these would not
be parts in a strict sense. Now, one might be tempted to say that
they are parts: they are the parts of the colors of the individual
points. Perhaps, but in whatever sense these might be parts, they
are not representations of the colors of the points in the represented
image. In other words, they are not parts in any sense that makes
Parts Principle true. However, we know exactly what it would mean
to combine these to get back the original photograph, because we
understand what it is to “add” color values and superimpose images.

In fact, this is a way of making more precise how the point made
by Kulvicki (2015) applies in certain examples. On his view, what
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is interesting and explanatorily unique about analog representations
requires a generalization of what should count as a “part.” Kulvicki
argues we should understand the “parts” of the Parts Principle to
be abstractions of representations, rather than parts properly under-
stood. Whereas it may be true that, in a strict sense, the parts of
the height of the liquid in a mercury thermometer do not represent
parts of the temperature, an abstraction of the liquid height repre-
sents an abstraction of the temperature. If we consider the height of
the liquid in a thermometer to be at some particular level, it repre-
sents some particular temperature. But we can also take the height to
be something like “between 70 and 80 mm”, which then represents a
temperature between 70 °C and 80 °C. Similarly for photos: a lower-
resolution version of a photo is a representation of the same image
as the original, just at a lower resolution. Thus, in this case, Kulvicki
would agree that the restrictions of color values of the photograph
do not count as parts, but as a kind of abstraction.

Making clear the distinction between independent and dependent
dimensions of variation, plus the intensive/extensive distinction in
magnitudes, makes clear why certain analog representations admit
of the Parts Principle while others do not. However, it is also clear
that, in many cases, we can restrict different dimensions of variation
in ways that do not amount to true mereological partitioning, but to
partitioning in ways that are part-like. Thus, although it is interesting
to understand why some analog representations have parts and others
do not, it is not as important as understanding how different dimen-
sions of variation can be restricted, and what smaller magnitudes
within the context of a particular representational scheme amount to,
whether or not they are true mereological parts.

5. Conclusion

This paper was an attempt to make progress toward a broad, unified
understanding of analog representation in all its forms. I sought to
do two things. The first was to articulate a more precise account
of analog representation, which required getting clearer about the
kind of mapping needed between representations and representata,
and distinguishing three elements of analog representational schemes:
what does the representing, what is represented, and the dimension(s)
along which the representation can vary. The second was to make
clear why the Parts Principle applies to certain representations but
not others, which required a discussion of intensive and extensive
magnitudes. Along the way I suggested that whether analog repre-
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sentations have true mereological parts of the kind that make Parts
Principle true is not as important as many have assumed, comple-
menting the point made by Clarke (2022).

The account offered here should be useful for those wishing to
understand representation in general, as well as how representations
are —or ought to be— understood in neuroscience and cognitive
science. An increase in precision and clarity about any matter is
probably an end in itself, but it seems particular pressing as we try
to make sense of what exactly it means for some part of a natural
system, such as the mind/brain, to have genuine representations.
However, setting that aside, my hope is that this account adds to our
understanding of both what is unique about analog representations,
and tﬂe ways in which different types of analog representation are
alike.
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