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SUMMARY: Mark Lange has defended the view that mathematical explanation and
grounding explanation diverge. In this paper, I argue that at least one type of ground-
ing relation is immune to his criticisms. After fixing a minimal separatist theory of
ground, I show that his arguments mostly rely on another thesis about grounding
(I'll call it “atomic grounding thesis”), which is not supported. Furthermore, a
second attempt at using purity is not entirely satisfactory.
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RESUMEN: Mark Lange ha defendido la opinion de que la explicacion matematica
y la explicaciéon basada en fundamentacion divergen. En este articulo sostengo que
al menos un tipo de relacion de fundamentacion es inmune a sus criticas. Tras
introducir una teoria separatista minima de la fundamentacion, muestro que sus
argumentos dependen en gran medida de otra tesis sobre la fundamentacion (a la
cual llamaré “tesis de fundamentacion atémica”), que carece de respaldo. Ademas,
un segundo intento utilizando la pureza no resulta completamente satisfactorio.

PALABRAS CLAVE: practica matematica, filosofia de las matematicas, relacion de
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1. Introduction

The question “What is mathematical explanation?” has received some
attention in recent analytic philosophy of mathematics. While, ac-
cording to Mancosu (2000), discussions about mathematical expla-
nation date back to Aristotle, it remains a nascent subject within
the analytic tradition of philosophy. Consequently, in this context,
only a few theories have been proposed to date regarding this issue.!

!Examples include the characterizing property theory by Steiner (1978),
Kitcher’s unification theory developed in Hafner and Mancosu (2008) extracted
from Kitcher (1989), and Lange’s salience theory (2014). More recently, Poggiolesi
(2023) and Poggiolesi and Genco (2023) have developed a theory of mathematical
explanation in terms of conceptual grounding.
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The subject began to garner wider attention as it turned out that
some mathematical proofs are more explanatory than others. Some
proofs merely verify that something holds, while others provide a
better explanation—a better understanding—of the fact under study.
However, this is not just an aesthetic aspect of mathematical proofs.
To borrow Detlefsen’s words, “a prime goal of proof is explanation”
(2008, p. 17). With this in mind, we assume that mathematical expla-
nation is an integral part of mathematical practice, especially when it
comes to mathematical research. When encountering a problem, such
as the distribution of prime numbers within the natural numbers,
mathematicians begin to offer explanations of the mathematical fact
under study. Mathematical explanation thus becomes a crucial aspect
of mathematical practice, particularly in mathematical research.

On the other hand, philosophers have recently paid considerable
attention to the topic of grounding. Metaphysical grounding is a non-
causal form of determination that is naturally tied to the theory of
dependence,? explanation,® and notions of modality.* Given the ap-
parent ontic connection between the explanandum and explanans,®
one may think that mathematical explanation is a form of grounding
explanation. The primary focus of this research is to explore the na-
ture of mathematical explanation and its relationship to metaphysical
grounding. In his work, Marc Lange (2019) argues that mathematical
explanation and grounding explanation are distinct, a position I refer
to as the “Divergence Thesis”.

Evaluating the Divergence Thesis ultimately hinges on our spe-
cific view of grounding and its connection with grounding explana-
tion. This paper primarily aims to defend the viability of at least
one version of the grounding relation that can withstand Lange’s ar-
guments. However, while providing a structured approach, Lange’s
view of grounding oversimplifies the grounding relation by placing
undue emphasis on logical profiles. A more robust understanding
of grounding, as developed by Litland® and Krimer,” aligns better
with the everyday practice of mathematics. I advocate the view that
mathematical explanation involves a metaphysical determination re-
lation that traces the truth of the items in the explanandum (what

2See Schnieder 2020.

3 See Glazier 2020.

*See Skiles 2020.

®See Pincock 2015, and D’Alessandro 2020.
®See Litland 2023.

"See Krimer 2018.
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is to be explained) back to the explanans (what explains). This is
best captured by a particular theory of grounding (to be discussed
shortly in subsection 3.2). This view distinguishes grounding expla-
nation from the grounding relation, where the former is backed by
the latter, resulting from a proper understanding of how the truth
of the items in the grounded is determined by the truth of the items
in the grounds. This view is further elaborated in a separate work.
Here is an outline of the paper. In section 2.2, I pinpoint a ver-
sion of the grounding relation that I claim is immune to Lange’s
arguments. In section 3, 1 critically assess Lange’s two main argu-
ments for the Divergence Thesis. I will show that his first argument
relies on an unjustified thesis, the Atomic Grounding Thesis, which
I discuss in section 3. I will argue that the minimal assumptions
made in section 2.2 (i.e., DeTg, DuT, and TrT) provide arguments
against this thesis. Moving on to Lange’s second argument, in sub-
section 3.2, I argue that his appeal to the purity of ground-revealing
proofs is also unsuccessful. I conclude that a single mathematical fact
can have multiple ground-revealing proofs, with each proof provid-
ing a different explanation. In section 4, I criticize Lange’s additional
arguments in sections 3 and 4 of Lange 2019. In subsection 4.2, I
show that opponents of the Divergence Thesis can also account for
coincidences in mathematics. In subsection 4.3, T show that they can
also account for the context-sensitivity of mathematical explanation.

2. Preliminaries on the Divergence Thesis and Grounding
Explanation

A major challenge in assessing the relationship between mathemat-
ical explanation and grounding explanation stems from the lack of
broadly accepted definitions for these two notions. As Marc Lange
notes, “there is currently no widely accepted account of either mathe-
matical explanation or grounding” (2019, p. 1). Given this ambiguity,
it is essential to understand the meanings attributed to mathematical
explanation and grounding relation, as well as various positions on
their relationship, before delving into the discussion.

2.1. What is the Divergence Thesis?

Let us begin by exploring the notion of mathematical explanation.
This type of explanation within the practice of mathematics is no-
tably diverse.? For instance, not all explanations within mathematics

8 For an introduction to the subject, see Mancosu 2011 and Mancosu 2001.
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are derived from mathematical proofs.” However, for the purposes of
this paper, our discussion will be limited to explanations offered by
mathematical proofs. These mathematical explanations feature two
principal components. The first component, which we will refer to
as the objective element of mathematical explanation, pertains to a
dependency relationship between the elements presented in the ex-
planandum and those in the explanans.'’ To illustrate, in the expla-
nations provided by a mathematical proof, the mathematical fact that
is proved depends on the mathematical facts that serve as premises.
The second component, termed the subjective aspect of mathematical
explanation, underscores how explanatory proofs produce a better
understanding of the facts being explained. This dual perspective
provides a framework necessary for a bona fide theory of mathemat-
ical explanation.

The main focus of Lange’s work (2019) is the relationship be-
tween mathematical explanation and grounding explanation. To use
Lange’s own words, “it is natural to wonder whether mathematical
explanation is a variety of grounding explanation. This paper will
offer several arguments that it is not” (2019, p. 1). I call this the
“Divergence Thesis” (henceforth DT), which asserts that mathemat-
ical explanations are not a variety of grounding explanations. Let us
pin it down here:

Mathematical explanation is not a variety of grounding explanation. (DT)

Acknowledged as a metaphysical thesis, one only needs one success-
ful example to support (DT). In other words, one only requires a
single example, including a ground-revealing proof that is not ex-
planatory per se. Specifically, as (DT) is primarily a metaphysical
thesis, the example in question should show that the ground-revealing
proof of a mathematical fact does not provide any explanation. So,
an explanation from the perspective of the everyday mathematician
may appear unsatisfactory or superficial. This will not disqualify it
from being considered an explanation.

For clarity, one should carefully distinguish (DT) and the sep-
aratism thesis about grounding (discussed in the next subsection).
While both are metaphysical statements, they differ in that (DT)
focuses on whether mathematical and grounding explanations are the

° Lange (2018) and D’Alessandro (2017) argue that not all of mathematical expla-
nations are carried out by mathematical proofs.

D’ Alessandro (2020) lists some of the different conceptions of dependency
between the relata of explanation.
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LANGE ON MATHEMATICAL EXPLANATION 27

same, whereas separatism about grounding states that the relation of
grounding is different from the explanation that it backs. So, discus-
sions about separatism and unionism about grounding relations are
independent of the debates surrounding (DT). Therefore, while sepa-
ratism broadly addresses the grounding relation independently of its
connection to mathematical explanations, (DT) specifically examines
the link between grounding and mathematical explanations without
presupposing their equivalence. Thus, although separatism relates to
a form of divergence, it does not directly correspond to the assertions
made by (DT). Here is a diagram illustrating this point (ST denotes
the separatism thesis):

Grounding Relation RUN Grounding Explanation 27, Mathematical Explanation.

Nonetheless, opponents of (DT) have differing views on the relation-
ship between mathematical and grounding explanations, depending
on their particular conception of the grounding relation. For exam-
ple, Poggiolesi and Genco (2023), as well as Poggiolesi (2023), more
directly favor the idea that mathematical explanation is a variety
of grounding explanation. However, these theories construe ground-
ing as a conceptual relation. It is also worth noting the historical
contributions of Bernard Bolzano to this discussion. His account of
objective proof is “one that indicates the objective dependence of a
given truth on other truths, where this dependence is ultimately to
be cashed out in terms of grounding” (Rusnock 2022, p. 367).!
In particular, he draws a distinction between proofs that merely
certify that a proposition is true and proofs that provide answers
to why-questions (i.e., ground-revealing proofs). According to Rus-
nock (2022, p. 367), Bolzano assumed that ground-revealing proofs
are explanatory—an early contribution to discussions of mathemati-
cal explanation in terms of grounding.'?

With these preliminaries out of the way, I delve into the grounding
relation in the next subsection, as it is pivotal to our discussion.

2.2. A Minimal Separatist Theory of Ground

Many grounding theorists take the grounding relation as primitive.
Roughly speaking, the grounds for the fact that X consist of the

' Bolzano’s ideas on the notion of the purity of proofs are also relevant here and
will be briefly addressed in subsection 3.2.

2 See Lange’s work (2022) for an overview of Bolzano’s contribution to the theory
of force composition and objective grounding.
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answers to the question “In virtue of what is it the case that X?”.
The fact that A is denoted by [A]. Say [A4] is a full ground for
[B] if no other fact needs to be added to [A4] to obtain [B]. Second,
suppose that [A] is grounded in [B], and [B] is grounded in [C].
Then we say that [A4] is immediately grounded in [B], and is medi-
ately grounded in [C]. An immediate full ground is denoted by <.
Additionally, for the purposes of this paper, grounding is considered
factive. This means that if [4] < [B], then it is the case that A4 and
it is the case that B. In addition, for the purposes of this paper, the
grounding relation holds between facts. However, we do not distin-
guish between a true proposition and a fact. So, when [A4] < [B], the
fact that A determines the fact that B, or the truth of the proposition
that A determines the truth of the proposition that B. I adopt the
following thesis regarding the grounding relation as a metaphysical
form of constitution:

A grounding relation posits a determination relation be-

tween the truth of the items appearing in the grounded

and the truth of the items appearing in the ground. In (DeT()
other words, the facts appearing in the ground determine

the facts appearing in the grounded.

The thesis outlined above aligns well with what we might call “ex-
planatory realism”. According to Roski, this is the view that “all
explanations provide information about relations of productive de-
termination such as, inter alia, causation and grounding” (2021,
p- 14121). Moreover, a relation of determination in the sense of DeT¢
is also a dependency relation; it highlights that the fact under study
depends on the facts appearing in the ground.

In addition, DeTg is compatible with the view that Lange adopts
in Lange 2019. According to Lange, the ground for a fact is “whatever
it is in virtue of which that fact obtains, and a truth-bearer (such as
a proposition) is grounded in its truth-makers” (2019, p. 2). If [B] is
whatever it is in virtue of which [A] obtains, then [A] is determined
by [B]. Moreover, if [B] determines [A], then [B] is whatever it is in
virtue of which [A4] obtains. Let us see an example from Fine (2012):

The fact that the ball is red and round is the case in virtue
of the fact that the ball is red is the case, and the fact that (1)
the ball is round is the case.
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To use the notation presented earlier, let A := “the ball is red”, B :=
“the ball is round”, and let C := “the ball is red and round”. Then,
we have:

4], [B] < [€]. )

As Glazier puts it (2020), the connection between grounding and
explanation is one of the few uncontroversial ideas in the debates
about grounding. In other words, it is almost granted that the items
in the explanans provide items in the expalanandum with some sort
of explanation. Call this grounding explanation. To use Raven’s ter-
minology (2015), two main frameworks address the relation between
grounding and explanation. According to unionism, grounding is
a form of explanation.'® Alternatively put, this view suggests that
the grounding relation and the grounding explanation are one and
the same. On the other hand, separatism sees grounding as a de-
termination relation that “backs” an explanation.'* The motivating
idea behind separatist theories of grounding is the similarity between
grounding and causation. Just as causation is a form of determination
in the physical world that produces an explanation, separatism treats
grounding as a form of determination, albeit in a non-causal domain.

The present paper adopts a separatist view of grounding. I assume
that the grounding relation itself pertains to a determination relation
in a non-causal domain, while grounding explanations represent what
the grounding relation, once established, will provide:

For any instance of [4] < [B], the left-hand side provides

the right-hand side with a grounding explanation. In par- (DuT)
ticular, the relation of grounding is different from the ex-
planation that it offers.

Finally, following Lange (2019), I will assume that the grounding
relation is transitive. Here is the statement:

If [A4] < [B], and [B] < [(C], then [4] < [C]. (TrT)

3 See Sjslin 2020 and Trogdon 2018.
1 See Skiles and Trogdon 2021 and Schaffer 2016.
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While the grounding relation and the grounding explanation are
metaphysically distinct, they are not unrelated. Using standard termi-
nology, the relationship between metaphysical grounding and ground-
ing explanation is called the backing relation. A genuine case of
grounding backs a grounding explanation. However, the nature of the
backing relation is a matter of some debate. Some theorists define
backing in terms of representation,'® while others use explanation
itself to clarify the backing relation.!® For the present research, I
stick to an intuitive notion of backing.

As a remark, the DuT serves as a resource to argue that knowledge
of the existence of a ground per se does not guarantee an under-
standing of the grounding explanation. This is analogous to causal
domains, where one may know a cause exists for a physical fact with-
out fully comprehending the explanation. Combined with the DeTy,
DuT allows for cases where a ground is known to exist, but it is
not properly revealed. These theses indicate that merely mentioning
grounds (i.e., ensuring there are grounds for a fact) is insufficient for
explaining them.!’

The previous remark points towards a more general framework. As
Litland suggests, there is a distinction between metaphysical, logical,
and conceptual notions of grounding (2023, p. 17). The framework
outlined here provides a metaphysical version of the grounding rela-
tion that cannot be reduced to logical entailment or mere deduction.
On this view, the transition between the grounded and the grounds
requires establishing a determination relation between the truth of
the items in the grounded all the way back to the truth of the items
in the ground. Applying this view to mathematical facts, the criterion
for a ground-revealing proof is that a proof is explanatory if it traces
the truth of the items in the explanandum all the way back to the
truth of the items in the explanans, answering the why-questions
regarding the fact under study via a proper understanding of the
determination relation between the grounded and the ground.

With these preliminaries, let us examine Lange’s arguments in
favor of DT in the next section.

15 See Trogdon 2018.

16See Kovacs 2020.

7See section 4.1 and the proof of the Fundamental Theorem of Algebra using
the Liouvel’s Theorem.
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3. Two Main Arguments for DT

3.1. Grounds Often Don’t Explain

In a nutshell, Lange’s first argument for DT is that grounds of a
mathematical fact often do not explain it. In other words, his first
argument suggests that ground-revealing proofs are non-explanatory.
Lange supports this claim with various examples. Let us consider
one of his examples along with two proofs mentioned in Lange 2019.
Consider the list of natural numbers from 1 to 99,999.

Fact 3.1.1. There are 50,000 occurrences of 7 in the list from 1 to
99, 999.

Proof. Start writing down all of the numbers from 1 to 99,999
and count each occurrence of the digit 7. For example, there is
one occurrence of the digit 7 in the number 7, one in 17 (totaling two
occurrences so far), and one in 99,997 (totaling 50,000 occurrences

up to this point). Hence, there are 50,000 occurrences of the digit 7
in the list from 1 to 99,999. ]

Proof. Add 0 to the list, which contains no occurrences of the digit 7.
The new set becomes {0,1,2,...,99999}. The number of 7s in this
new list is the same as in the original list. Next, for every number
with fewer than five digits, add leading zeros to make each num-
ber five digits long. This new set looks like {00000, 00001, 00002, . . .,
09999}. This set also has the same number of 7s as the original list.
This set represents all possible five-digit combinations of the digits O
through 9. There are 100, 000 numbers, and each digit occurs equally
often. Therefore, the total number of digits in this set is 500, 000.
Since each digit appears with equal frequency, one-tenth of these
digits are 7s, resulting in 50,000 occurrences of the digit 7. O

Let us delve into further details of the first argument for DT.
Using the example above, Lange claims that the first proof identifies
the fact’s grounds but does not provide as much explanation as the
second proof. He argues that this example shows that grounds alone
do not automatically yield an explanation. As Lange puts it, “If
mathematical explanation worked by tracing back the explanandum
to its grounds, then it would be puzzling why the first proof does not
qualify as a mathematical explanation” (2019, p. 3).
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As mentioned earlier, under a metaphysical understanding of DT,
Lange only needs a single successful example to defend DT. Never-
theless, en route to do so, he should first establish the following three
statements:

1. That the first proof does not explain at all.

2. That the second proof, while more explanatory, does not in-
clude the grounds of the fact in question.

3. Other explanatory proofs, often, do not contain the grounds of
the fact in question.

In what follows, I will show that Lange’s arguments are inadequate to
support any of the three statements. Regarding 1, it is unclear why
he believes the first proof does not explain anything at all. Lange
himself acknowledges that “explanatory power is a matter of degree;
it is not all or nothing” (2014, p. 511, footnote 21). Although the
second proof is granted to have greater explanatory power than the
first, the first proof still provides minimally informative grounds.
This is not particularly a problem for the opponent of DT because,
as Litland observes, “a proposition may have many distinct full im-
mediate grounds” (2023, p. 3) and different grounds have differ-
ent explanatory powers. Moreover, the first proof has at least two
different variants, each with distinct grounds, conveying different
information, and possessing different explanatory values. While the
explanatory value of the grounds in both variants is limited, they
offer different explanations.

To illustrate, on the one hand, the first proof relies on identifying
a series of partial grounds [4;] that produce a full ground for the
Fact 3.1.1. For example, [4;] is the fact that there is one occurrence
of the digit 7 in the list from 1 to 7, and [A43] is the fact that there is
one occurrence of the digit 7 in the list from 8 to 17. So, in the list
from 1 to 99,999, the ground consists of [41], [A42], ... , [450000]-

On the other hand, one might say that [4] is itself a mathematical
fact, grounded in a series of grounds [Aﬁ] (where ¢ = 1,...,7),
indicate that there is no occurrence of 7 in the list from 1 to 7
except in the number 7. For example, [4]] says that there is no
occurrence of 7 in the number 1, [42] is the ground for the fact that
there is no occurrence of 7 in the number 2, and so on, up to [A4]
which serves as the ground for the fact that there is an occurrence of
the digit 7 in the number 7. So, [A4}] (where i = 1,...,7) forms the
ground for [4,].
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The first variation uses [4;]s, while the second employs [A;-]s as
grounds for the Fact 3.1.1. Although both variations are not consid-
ered the best explanations in everyday mathematical practice, it is
not clear they offer no explanation whatsoever. For example, these
two variations differ in the information they convey and their overall
explanatory power. To illustrate, [A;] includes information regarding

the absence of the digit 7 in certain members of the list, whereas [A4;]
reports the number of occurrences of 7s in sub-lists (e.g., from 1 to 7,
from 8 to 17, etc.). Given the metaphysical undertone of the present
debate about DT, it is not clear that the difference between the first
and second proofs concerns explanation per se (which is required for
Lange’s argument).

To further illustrate the explanatory aspect of the first proof,
imagine a hypothetical scenario where humans, including the best
mathematicians, could only count a finite number of things and had
only basic finite arithmetic knowledge. In such a scenario, the only
grounds people could identify would be those in the first proof.
Consequently, the first proof, with its minimal information, would
be the sole explanatory proof available, as the second proof would be
incomprehensible due to its more complex grounds. The main issue
with the first proof is that it uses grounds with minimal mathematical
information (e.g., whether a number on the list contains the digit 7)
and, therefore, merely provides a minimal explanation.

As a final remark on 1, opponents of DT, in particular, those
who adopt a separatist view of grounding, as outlined in subsec-
tion 2.2, are not committed to the idea that all mathematical proofs
are explanatory. The resources provided by DeTs and DuT allow
us to imagine cases in which a mathematical proof only verifies that
a theorem is true, i.e., a proof that only ensures the existence of a
ground without properly revealing it. However, in the case of the first
proof for Fact 3.1.1, the issue is that the ground itself is minimally
informative.

Regarding 2 and 3, Lange needs to show that the second proof
is not ground-revealing. The second proof employs a different set of
concepts to establish the fact in question. Nonetheless, the second
proof does provide a basis for why Fact 3.1.1 holds. It determines
that the number of 7s in the list from 1 to 99,999 is 50,000. Why,
then, is it not justified to say that the second proof provides a ground
for Fact 3.1.1 according to DeT;? One cannot argue solely from
the minimal separatist theory of ground (i.e., theses DeTg, DuT,
and TrT) that the second proof does not involve the fact’s grounds.
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Therefore, Lange introduces an additional assumption regarding the
grounding relation. Due to its similarities with the logical structure
of sentences, I call this statement the “Atomic Grounding Thesis”

(Lange 2019, p. 2):

I am making the rough presupposition that a mathematical

fact is grounded by the atomic (or negated atomic) truths

to which one is led if one starts with that fact and moves
“downward” to logically simpler truths in an obvious way, (AGT)
such as from universal facts (i.e., facts expressed by gener-
alizations) to their instances and from conjunctions to their
conjuncts.

This statement is the most controversial claim Lange makes about
the grounding relation. Furthermore, the role of AGT in Lange’s
argument needs further clarification. On the one hand, AGT may be
used to show that the first proof includes the ground for Fact 3.1.1.
On the other hand, it is used to argue that the second proof does
not include the grounds for Fact 3.1.1. Therefore, AGT can play two
significant roles, which I will call the designatory and discriminatory
roles, referred to as designatory AGT and discriminatory AGT, re-
spectively. Since Lange did not identify these roles, I will illustrate
them through examples.

As a designatory statement, AGT aims to identify a particular
ground. In the example above, designatory AGT identifies the indi-
vidual occurrences of 7s in the list from 1 to 99,999 as the ground
for Fact 3.1.1. On the other hand, discriminatory AGT prevents an
alleged ground from being considered an actual ground. For exam-
ple, in the case above, discriminatory AGT says that the second proof
does not involve the grounds for Fact 3.1.1. Indeed, Lange implicitly
endorses the discriminatory role. For instance, in his comments on
the second proof of 3.1.1, Lange says, “This proof does not specify
wherein the list of numbers each 7 appears; it does not give the re-
sult’s ground” (2019, p. 2). This shows that AGT not only designates
the fact’s grounds in the first proof but also prevents the second proof
from being considered as identifying the grounds for Fact 3.1.1. I will
argue that the discriminatory role of AGT is unjustified.

First and foremost, the discriminatory role of AGT is essential
to defend DT. Otherwise, opponents of DT could argue that what
the two proofs of Fact 3.1.1. show is that not every ground enjoys
the same level of explanatoriness. According to opponents of DT,
especially those opponents of DT who embrace the separatist theory
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of grounding, various ground-revealing proofs provide different ex-
planations for a mathematical fact. Hence, examples like the above
could even be seen as evidence in favor of the view that identifies
mathematical explanation with grounding explanation. Hence, every
ground-revealing proof is explanatory, at least to a minimal degree.
Just as the goal of science is to find better answers, mathematicians
pursue a similar goal. So, nothing in the mere designatory version of
AGT provides sufficient evidence for DT. Consequently, the discrim-
inatory AGT is crucial to defend DT; one must argue that the other
proofs do not contain grounds for the mathematical fact in question

to defend DT.

Although he does not use the specific terms mentioned here (i.e.,
discriminatory vs. designatory), Lange has addressed the issue as a
possible objection, stating,

It might be objected that although the first proof displays the result’s
grounds, this fact does not preclude the second proof from also doing
so0; a given fact can have many complete sets of grounds. For instance,
a given fact’s grounds can themselves have grounds, and the latter may
then qualify as grounds of the given fact. (2019, p. 2)

Lange provides three responses to this objection. First, he asserts
that the example aims to demonstrate that the grounds of a partic-
ular mathematical theorem do not inherently explain the theorem.
We have already discussed this initial point. Second, he contends
that the second proof in the example does not identify the grounds
of the fact in question. Opponents of DT might argue that the sec-
ond proof designates a different ground for the fact in question.
What prevents opponents of DT from acknowledging that the sec-
ond proof involves a different ground? Lange’s response relies on the
discriminatory aspect of AGT. Finally, Lange’s third answer is that
proofs identifying grounds are pure, a point which will be discussed
in subsection 3.2. So, let us discuss discriminatory AGT both from
the viewpoint of the minimal separatist theory of grounding and the
everyday mathematical practice. The role of AGT in evaluating the
example mentioned earlier is clarified in the following diagram ([C]
refers to the ground(s) revealed by the second proof, and Dis AGT
and Des AGT represent the Discriminatory AGT and Designatory
AGT, respectively):
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[Fact 3.1.1]

From a purely grounding-theoretic point of view, Lange ties the
grounding content to the logical profile of propositions, suggesting
that a mathematical fact “is grounded by the atomic (or negated
atomic) truths to which one is led if one starts with that fact and
moves ‘downward’ to logically simpler truths in an obvious way”
(2019, p. 2). However, relying solely on the logical profile for ground-
ing content is questionable. This is because the grounding relation
is hyperintensional, meaning that even logically equivalent propo-
sitions may have different grounds. As Krémer states, “Ground is
accordingly sensitive to features of a truth that go beyond its logical
profile” (2018, p. 786). Grounding should reveal how the truth of the
explanandum depends on the explanans, involving more than just
logical entailment but also the substantive connections underpinning
mathematical truths. Therefore, a more comprehensive understand-
ing of grounding requires a ground-first approach, going beyond log-
ical forms to metaphysical relations and providing a more natural
view of mathematical explanation.

One major issue with discriminatory AGT is what Litland (2023,
section 4.2) calls the “commonality problem”. This problem arises
in theories of grounding that fail to specify what is common to all
instances of grounding. Discriminatory AGT only exacerbates this
issue. Lange defines grounding for a fact as “whatever it is in virtue
of which that fact obtains” (2019, p. 2), making it difficult to jus-
tify the discriminatory AGT. According to discriminatory AGT, the
transition from a fact to its grounds occurs only “‘downward’ to
logically simpler truths in an obvious way” (2019, p. 2). This ap-
proach contradicts Lange’s own earlier statement on the nature of
the grounding relation. The core of this problem lies in not adopt-
ing a ground-first approach. A metaphysical understanding of the
grounding relation can address the commonality objection by provid-
ing a clear metaphysical definition of the grounding relation.

The theory of grounding advocated here exemplifies a ground-
first approach, avoiding the grounding-theoretic problems mentioned
above. The separatist theory of grounding, along with DeT¢, DuT,
and TrT, provides a framework that specifies the nature of the
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grounding relation through DeT¢, which is a metaphysical notion.
Additionally, DuT allows this theory to avoid reductionist views
of grounding. Furthermore, this view naturally poses a criterion for
ground-revealing proofs. A proof, according to this view, is ground-
revealing if one can trace the truth of the items within the grounded
all the way back to the truth of those within the ground. Thus,
the explanation backed by the determination relation results from a
proper understanding of the determination relation itself. It involves
comprehending how the items in the ground determine the truth of
those in the grounded, without falling into any reductionism.

In addition to the purely grounding-theoretic issues, discrimina-
tory AGT is also a dubious statement in terms of everyday mathemat-
ical practice, where mathematicians often provide several mathe-
matically equivalent conditions for proving a mathematical theo-
rem. These statements typically take the form, “The following con-
ditions are equivalent”, followed by several mathematically equiv-
alent conditions. These equivalent conditions, which we can call
definition-lemmas, serve as lemmas offering different criteria for the
same mathematical fact. The raison d’étre of definition-lemmas is
that mathematicians prefer to use the most appropriate condition for
proving that a mathematical fact holds. Each criterion is connected to
a specific family of concepts, and each equivalent condition provides
a different representation of a mathematical fact. Nevertheless, AGT
(especially in its discriminatory version) overly relies on a particular
logical profile.

Let us consider an example of a definition-lemma. To prove that
a set S is infinite one should show that the cardinality of S (denoted
by |S|) is larger than any finite number. Another way to prove that
S is infinite is to show that an infinite set (say a copy of N or Q) is
included in S. Here is Definition-Lemma:

Definition-Lemma 3.1.2. Let S be a set. Then, to show that S is
infinite, one can proceed with one of the following equivalent con-
ditions:

1. The cardinality of S is larger than every natural number.

Formally, for all n € N, |S| > n.

2. An infinite set is included in S. More formally, there is an
infinite set S', and a function f such that f : S" — S is
an injection.
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Definition-Lemma 3.1.2 suggests, among other things, that the
property of being infinite can be understood as a disjunction. There-
fore, to prove that a particular set .S is infinite, one can either show
that |S| is larger than n for any natural number, i.e., [S| > 1,|S| >
2, ... Another approach is to show that an infinite set is injected in
S. It is worth noting that Definition-Lemma 3.1.2 does not imply
that the definition of infinite is a disjunction. Rather, it shows that
to prove the infinity of a particular set, say S, one can proceed by
either of the two conditions. As we will see in the example below,
each of the two conditions provided above produces a different un-
derstanding of why a particular set is infinite—either by showing that
S cannot be finite or by showing that it is large enough to contain
an infinite set.'® Let “Inf” represent the property of being infinite.
Additionally, let “Cardn” and “Injf” denote the first and second
conditions of Definition-Lemma 3.1.2, respectively. Thus, we have
the following:

Inf(S) < (Cardn(S) V Injf(S)) 3)

Let us see how the existence of the definition-lemmas in the practice
of mathematics provides counter-examples to discriminatory AGT.
A field F is a structure of the form (F,+, X, 1p,0p) containing two
group structures: a multiplicative group and an additive group with
1r and Op indicating the neutral elements of the multiplicative and
additive groups, respectively. Say that F has characteristic 0, if for all
nand a € F, a+a+---+a (n-times) 7 0. Using the definition-lemma
above, we prove that every field with characteristic 0 is infinite.

Fact 3.1.3. Let F be a field with characteristic 0. Then, F is infinite.

8 This is particularly important because equivalent conditions in a definition-
lemma avoid the issues encountered by Genco and Poggiolesi in a similar context.
Consider the case of colors. Genco and Poggiolesi (2023), in their view of conceptual
grounding based on conceptual complexity, treat red as the set of all red shades.
Thus, they define the color red as “the set of all types of red-crimson, scarlet, [...]
—and hence can be seen as composed of them. In this case, the color red will count
as more complex than the color crimson”. However, as Litland (2023) points out,
this view is intuitively problematic. The color red is not merely a collection of its
shades, such as crimson or scarlet. Instead, crimson can be seen as a variant of
red. In the context of definition-lemmas, I circumvent this by proposing that the
equivalent conditions offer multiple ways to demonstrate that a set is infinite. From a
purely grounding-theoretical perspective, this aligns with what Krémer (2018) refers
to as “modes of verification”. This is a point that Lange’s view of grounding does
not capture, as we will see shortly.
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Proof. Let F be a field with characteristic 0. Then, for any positive
integer n, consider the elements 0, 17,2 15,3 - 1p,...,n- 1p. If the
field had a finite size, then for some n, the elements would eventually
repeat, i.e., m - lp = k- 1y for some m # k. This implies (m —
k) - 1 = 0, which contradicts the assumption that the characteristic
is 0 (since m — k would be a positive integer). Therefore, the set
{0,1p,2-15,3+1p, ...} contains distinct elements. Hence, F' must be
infinite. ]

Proof. Let F be a field with characteristic 0. The field must contain
an element lp. For any integer n, n - 1r (sum of 1p with itself n
times) is distinct because the characteristic is 0. Construct the set
Z-1p = {n-1p | n € Z}, which is isomorphic to the integers Z.
Form the field of fractions Q-1 = {% g |m,n€Z,n# 0}, which

is isomorphic to Q. Since Q is infinite, /' must also be infinite. [

The first proof explains why F' is infinite by showing that for any
natural number n, the field F' as a set should contain more members
than n; i.e., |F| > n for all natural numbers n. In other words, this
proof explains the fact that F is infinite by showing that since F
has characteristic 0, F' cannot be finite. So, with the aid of the first
clause of Definition-Lemma 3.1.2, it answers the question “Why is
F infinite?”. Thus, it demonstrates that because the cardinality of
F should be larger than any natural number, it must be infinite.
In particular, the first proof shows how the truth of the Fact 3.1.3
is traced back all the way to the truth of the premises, including
Definition-Lemma 3.1.2.

The second proof, in contrast, explains the infinity of /' by show-
ing that F" should contain an isomorphic copy of Q, which is infinite.
Thus, it shows that under the conditions where F' has characteristic
0, it should be “large enough” to contain an infinite set, say Q or
N.!% In particular, as the second proof does not depend on the choice
of F, it shows that all fields with characteristic O are structurally sim-
ilar, i.e., they all contain a copy of the rational numbers. Finally, the
second proof relies on another condition of Definition-Lemma 3.1.2,
as it makes use of the fact that F' is infinite if there is an injection
from Q to F. Again, this proof traces the truth of the fact that is
proven to be the truth of the items appearing as premises.

% As a technical note, in this case, there is no difference whether the injected
set is N or Q as these two sets have the same cardinality. This is illustrated by the
following diagram, with the arrows suggesting how the set of rational numbers could
be counted by natural numbers (for simplicity, we only count Q*):
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Discriminatory AGT fails to account for examples like this one.
To illustrate, the first proof uses the first clause of the Definition-
Lemma 3.1.2. The first proof successfully proves that for any natural
number n € N, the cardinality of |F| is bigger than n, i.e., that
|F| > n for all n € N. So, it is in virtue of the fact that |F| > n for
all of the natural n that F is infinite. Thus, the facts expressed by
the sentences |F| > n for each n € N form a ground for the fact that
F is infinite. On the other hand, the second proof uses the second
clause of the Definition-Lemma 3.1.2. It proves that an infinite set
(say N or Q) is injected in F. To put the previous two conclusions
together, we have:

[Cardn(F)] < [Inf(F)], and [Inj f(F)] < [Inf(F)]. (4)

This serves as a counter-example to discriminatory AGT. Recall that
Lange understands the ground of a fact as “whatever it is in virtue of
which that fact obtains, and a truth-bearer (such as a proposition) is
grounded in its truth-makers” (2019, p. 2). According to this proof, F'
is infinite in virtue of the fact that |F| is larger than any natural num-
ber. To be more specific, Lange’s criterion implies that the grounds
in the first proof are |F| > 1, |F| > 2, ... which constitute [Inf(F)].
However, discriminatory AGT implies that [Inj/(F)] is not a ground
of [Inf(F)]. On the other hand, if we proceed with the second clause
of Definition-Lemma 3.1.2, the ground of the fact is that an infinite
set is included in F, which is [Inf(F)]. Nonetheless, discriminatory
AGT implies that [Cardn(F)] is not a ground of [Inf(F)]. In either
case, discriminatory AGT contradicts 4.

That said, opponents of DT who embrace the separatist theory of
grounding (i.e., DeT¢, DuT, and TrT) can account for the above
case. First, in both proofs, the truth of the items within the premises
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determines the truth of the fact that F' is infinite. Thus, by DeT¢, we
can see that a ground has been mentioned in both proofs. In addition,
the explanations that are backed by the determination relation are
properly revealed in both cases. This is because, via these proofs, the
truth of the items within the fact being proved is traced back to the
truth of the items occurring as premises, rendering them explana-
tory proofs of Fact 3.1.2. Thus, these proofs are ground-revealing,
as a single mathematical fact could have multiple grounds in this
framework.

This way, the existence of definition-lemmas in everyday practice
of mathematics provides a counter-example to the discriminatory ver-
sion of AGT. However, this version of AGT is crucial for Lange’s
main line of argument. Returning to the example of 7s, as you recall,
to show that the combinatorial proof does not contain Fact 3.1.1’s
ground, Lange appealed to discriminatory AGT, which is an unjus-
tified statement. I conclude that Lange’s argument that the second
proof does not include the Fact 3.1.1’s ground is not convincing.

3.2. Metabasis Eis Allo Genos

This subsection focuses on Marc Lange’s second argument, which
suggests that ground-revealing proofs are pure and that this purity
undermines their explanatory power. The argument from purity can
be seen either as a second argument for DT or as an argument for
a justification of the discriminatory role of AGT. However, deciding
between these two interpretations does not affect the counterargu-
ments presented here. After briefly reviewing the notion of purity,
I attempt to extract Lange’s criterion for purity of proofs and then
I show that these attempts are unsuccessful. Finally, as a counter-
example to the link between purity and explanatory value, I present
Bernard Bolzano’s proof of the mean value theorem. According to
both Lange’s and Bolzano’s criteria, this proof is pure; however, it
notably diverges from Lange’s statement as it is not a brute-force
proof and, hence, remains highly explanatory.

According to Detlefsen and Arana (2011) and Detlefsen (2008b),
debates about purity can be traced back to Aristotle. Aristotle’s no-
tion of purity is metaphysical. He believed that purity is a way to
prevent what he called “metabasis eis allo genos” (meaning cross-
ing from one genus to another). He argued that all categories are
metaphysically distinct, so moving from one category to another is
prohibited. Another metaphysical version of purity is presented in
the 19th century by Bolzano. Bolzano’s idea of the purity of proofs
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was influenced by his view on the role of geometry in mathematics.
He held that geometry, as a subordinate discipline of mathematics
to algebra, arithmetic, and analysis, should not intermingle with uni-
versal mathematics (Rusnock 2022, p. 365). For Bolzano, the former
is not as general as the latter. Consequently, he believed that in-
troducing geometric concepts into proofs of universal mathematics
(e.g., algebra or analysis) compromises their clarity and precision.
This belief in maintaining a strict separation ensured that proofs
remained pure—free from extraneous concepts not essential to the
theorem itself. By doing so, contrary to Lange’s view of pure proofs,
Bolzano argued that only pure proofs are explanatory. On the other
hand, Detlefsen and Arana (2011) describe “topical purity” as an
epistemological view of purity pertaining to the stability of solutions
in mathematical problems. Topical purity is considered an epistemic
virtue, balancing the resources used in the solution and the concepts
used in the statement of the problem.

Considering the metaphysical implications of DT, a metaphysical
version of purity is essential to either justify a discriminatory role
for AGT or to argue that the grounds of a mathematical fact should
be pure, with pure proofs lacking explanatory power. Therefore, it
seems necessary to derive a metaphysical criterion for purity from
Lange’s 2019, section 2. However, Lange’s version of purity is not
fully developed. Additionally, Lange proposes various versions of
purity, which cannot all be evaluated in the same way. In one version,
he employs the contentious notion of the “essences” of the items in
a theorem. Consider the sentence “n!/k!(n — k)! for (n > k), is an
integer”. Lange assumes that the essence of the items in the statement
is arithmetical. Consequently, a pure proof of the statement should
be arithmetical. Thus, we have a preliminary stance:

Arguably, a pure proof is roughly a proof that proceeds
entirely from the facts about the essences of the mathe-
matical items figuring in the theorem being proved. (2019,

p-7)

Interpreting 5 as a metaphysical criterion or a definition of purity
requires a clear understanding of what constitutes the essence of a
mathematical fact. As a metaphysical statement, 5 should provide
a criterion for identifying the essence of a given mathematical fact.
However, this is not a straightforward task. Steiner (1978) used the
term “characterizing property” to avoid the controversial notion of
an essence of a mathematical fact. Many theorems in mathematics

()
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connect algebraic facts to geometric facts. For instance, Hilbert’s
Nullstellensatz* establishes a bridge between algebra and geometry.
It is fundamental to modern algebraic geometry, linking ideals (an
algebraic concept) with varieties (a geometric concept). Many proofs
in algebraic geometry rely on these connections, demonstrating that
algebraic facts about sets relate to facts about polynomial ring ideals.
Proofs using these links are as valid as other proofs. Even if there is a
bona fide notion of the essence of a mathematical fact, the connection
between a pure proof and grounds remains unclear. Therefore, 5 is
underdeveloped as a definition and cannot serve as a metaphysical
criterion.

Lange’s paper also discusses an alternative conception of purity.
According to this version, a pure proof is not limited to using only
the concepts explicitly stated in the theorem. Instead, the concepts
used in a pure proof can extend beyond those necessary for merely
understanding the theorem. For example, in a discussion about the
Taylor series, Lange states that “a proof that appeals to imaginary
numbers should still be regarded as pure if it provides informa-
tion about the theorem’s grounds” (2019, p. 6). This means that
any concept contributing to the understanding of the grounds of a
theorem is considered intrinsic to the theorem and can be included
in a pure proof. In other words, a proof is pure if it uses concepts
that, despite being potentially extraneous to the theorem’s statement,
provide significant insight into its grounds. This approach allows for
a broader range of concepts to be utilized in pure proofs as long as
they illuminate the grounds of a mathematical theorem.

For a theorem T let C be the set of concepts occurring in

T’s statement. Let ¢ be a particular concept. Then ¢ can
occur in a pure proof of T if ¢ gives information about ©)
some of T’s grounds.

Criterion 6 appears to offer an improved version of purity compared
to the previous one. It avoids the contentious notion of the essence
of a mathematical fact and is more modest in its scope, permitting
the use of concepts not directly stated in the theorem. However,
this criterion has its own limitations. By appealing to the grounds
of a mathematical fact, 6 might trivialize the distinction between
pure and impure proofs. It essentially puts the cart before the horse,
as determining whether a proof is pure according to this criterion

2 See Lang 2005, p. 380, Theorem 1.5.
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requires first identifying the grounds for the fact in question. In this
sense, 6 cannot provide AGT with any discriminatory power since
it relies on the concept of grounding, which AGT itself seeks to
elucidate. Therefore, the criterion’s applicability is limited because it
presupposes a clear understanding of what constitutes the grounds of
a mathematical fact. Furthermore, under a more liberal interpretation
of the grounding relation, 6 might be seen as trivially true for any
concept used in any correct proof. If any concept contributing to
understanding the theorem’s grounds is considered intrinsic and per-
missible in a pure proof, the criterion becomes overly inclusive. This
inclusivity risks erasing the distinction between pure and impure
proofs altogether, making the criterion less effective in discriminating
between different types of proofs based on their explanatory power.
Beyond the underdevelopment of the concept of purity in Lange’s
work, the primary issue with his argument is that it fails to show that
pure proofs often do not explain.?! For any bona fide understand-
ing of purity, Lange must demonstrate that pure proofs frequently
fail to explain or often resort to brute-force methods, which lack
explanatory value. However, neither of these claims appears to be
substantiated. Moreover, some mathematicians would contest both
assertions regarding the relationship between the purity of a proof
and its explanatory power. For instance, Bolzano believed that a pure
proof of the mean-value theorem is the most explanatory proof. In
what follows, I will present Bolzano’s proof of the mean value the-
orem. | will then show that although Bolzano’s proof is pure, it is
highly explanatory and, in particular, it is not a brute-force proof.
Bolzano’s proof of the mean-value theorem, as outlined in subsec-
tion 13.3.4 of Rusnock 2022, starts with two continuous real-valued
functions f(x) and g(x), defined on a closed interval [a, b]. The initial
conditions are set as f(a) < g(a) and f(b) > g(b). Bolzano employs
a precise definition of continuity for his proof: a function f(x) is
deemed continuous on [a, b] if, for any point x within that interval,
the difference f(x+e)— f(x) can be made arbitrarily small by making

' In footnote 11 of his work (2019, p. 7), Lange says, “Although a proof’s purity
need not contribute to its explanatory power, purity is nevertheless a feature that
mathematicians often seek and prize in proofs.” So, according to Lange, a proof’s
purity does not automatically link with its explanatory value. However, according
to Lange, pure proofs often resort to brute-force methods and, consequently, are
not explanatory. Hence, according to Lange, while these notions are semantically
separate, in practice, grounding-revealing proofs are often pure proofs that use
brute-force methods. Below I discuss Bolzano’s proof of the mean-value theorem
to challenge these claims from the viewpoint of mathematical practice.
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e sufficiently small. Then, the mean value theorem, as presented by
Bolzano, says that there is a ¢ € (a, b) such that f(c) = g(c).

Here is the proof sketch of the mean-value theorem by Bolzano.
Assuming the continuity of f and g, there exists an € > 0 such
that for any i in (0,€), the inequalities f(a + i) < g(a + i) hold.
This is because the values of f and g can be made arbitrarily close
to f(a) and g(a), respectively, within a sufficiently small interval
around a. Since f(b) > g(b), there must be a smallest U € (a, b)
such that f(a+ U) = g(a + U). This U marks the point where the
function values transition from f(x) < g(x) to f(x) > g(x). By
continuity, at this critical point U, the functions f and g must be
equal. Therefore, there exists a point ¢ € (a,b) where f(c) = g(c),
completing the proof.

Bolzano’s method emphasizes an analytical approach, relying strict-
ly on the defined mathematical properties rather than geometrical
notions. In particular, the concepts used in the proof, such as the
continuity of functions, are intrinsic to the mean-value theorem.
This proof is explanatory because it addresses the underlying rea-
sons why f and g must be equal at some point within the interval
[a, b]. Moreover, the proof does not resort to brute-force methods.
Instead, it employs the definition of continuity to highlight the high
explanatory power of the mathematics involved.

The example presented here highlights a deeper flaw in Lange’s
approach to grounding and explanation, specifically, a deeper issue
in his conception of grounding. His emphasis on the logical profile
of propositions as the sole determinant of their grounds leads him to
undervalue the explanatory power of pure proofs, categorizing them
as lacking explanatory value and employing a brute-force method. A
revised understanding of grounding in mathematics results in a more
faithful approach to pure proofs in mathematics.

I conclude that Lange’s argument from purity is unsuccessful
either in showing that AGT has a discriminatory power or showing
that ground-revealing proofs are pure and that pure proofs do not
explain. I discuss Lange’s complementary arguments for DT in what
follows.

4. Further Arguments for DT

This section will discuss Lange’s two additional arguments in favor of
DT. These two arguments are, at least in part, motivated by Lange’s
theory of mathematical explanation. A full analysis of Lange’s ac-
count of mathematical explanation is beyond the scope of the present
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research. However, as Lange suggests, “a sketch of such an account
would support my arguments in the previous section. In addition, the
account I will now sketch suggests two further arguments that math-
ematical theorems are not automatically explained by their grounds”
(2019, p. 11). Therefore, for these purposes, I briefly outline his
account and then present my counterarguments.

4.1. Salience Theory and Mathematical Explanation

Lange’s theory of mathematical explanation is presented briefly in
Lange 2019 and in more detail in Lange 2014. According to Lange, a
mathematical explanation comes from exploiting the salient features
of its explanandum. More specifically, a proof is explanatory if it
addresses the salient features of the fact under study. For instance, in
the example of 7s, the second proof is explanatory because it accounts
for the salient feature that 50,000 (the number of 7s appearing in
the list) is equal to half of 100,000 (which is larger than 99,999 by
one). In contrast, the first proof does not address the salient feature
and is therefore not explanatory.

As a corollary to Lange’s theory, a brute-force proof is not ex-
planatory because, according to Lange, these proofs are not sensitive
to salient features and, hence, are not explanatory. To borrow his own
words: “an explanation must (on this proposal) pick out particular
features of the setup that are similar to the result’s salient features,
tracing the result’s salient features back to them” (2019, p. 13).2
Subsequently, Lange provides two complementary arguments to sup-
port DT, i.e., an argument from the coincidences in mathematics
and an argument from context-shift. These two further arguments
are discussed separately in the next two subsections. However, a

2 The explanatory role of proofs using brute-force methods requires a deeper
study. While some proofs employing brute force are not explanatory as they some-
times fail to properly reveal the grounds, the view that such proofs are never ex-
planatory seems too hasty. For example, consider the proof of the infinity of fields
with characteristic 0 (the first proof for Fact 3.1.3 in subsection 3.1). In this proof,
a series of partial grounds determining that |F| > n for each n produce a full
ground for Fact 3.1.3. Although every partial ground uses a method similar to brute
force, the overall proof explains why F should be larger than any finite number and,
consequently, infinite.

From a ground-theoretic point of view, this could be combined into a general
framework of bilateralism about the ground as discussed in Litland (2023, p. 20). In
some cases, like the one discussed in the first proof of Fact 3.1.3, individual grounds
could be viewed as taking on the task of what Litland describes as explanatory
rejection. As every individual case is rejecting one case, they overall produce a
positive explanation of the fact that F is infinite.

Critica, vol. 57, no. 169 (abril 2025) DOI:https://doi.org/10.22201/iifs.18704905¢.2025.1658



LANGE ON MATHEMATICAL EXPLANATION 47

brief critical survey of salience theory seems appropriate as salience
theory is the motivating idea behind these two arguments.

A major problem with salience theory is that it fails to show how
the items within the explanandum depend for their truth on the truth
of the items within the explanans. It is common to assume that, in
a genuine case of explanation, there should be a dependency relation
between both relata of the explanation. Consequently, the salience
theory fails to identify the differences between a proof that properly
establishes such a dependency relation and one that does not. Here
is an example. To prove a mathematical theorem, mathematicians
sometimes cite another theorem. In some cases, the cited theorem is
essential in understanding why the proved theorem holds.

Theorem 4.1.1. (Fundamental Theorem of Algebra) FEvery polyno-

mial with coefficients in C has a root in C.

There are many proofs for the Fundamental Theorem of Algebra
4.1.1, including topological proofs or algebraic proofs. One of the
straightforward proofs of Theorem 4.1.1 comes from Liouville’s The-
orem. Liouville’s Theorem states that:

Theorem 4.1.2. (Liouville’s Theorem) Let f be an entire function
(analytic everywhere in the complex plane) and bounded. Then, f
is constant.

Recall that a polynomial equation p(x) in C is something of the
following form, where x is a variable over C and a;s € C:

p(x) = aya" + asx” "+ .+ a,. =0.

Polynomials with coefficients in C have a striking feature. Polyno-
mials are combinations of algebraic expressions that depend on x for
their value. Therefore, as x varies, p(x) also varies. However, notably,
polynomial equations show similar patterns of behavior under certain
conditions. For example, for x — oo, or x — —o0, |p(x)] — oo.
Moreover, the Fundamental Theorem of Algebra addresses the same
issue, suggesting that such polynomials display a similar behavior
regarding solvability in C: they all have a solution in C.

Here is a proof of the fundamental theorem of algebra using
Liouville’s theorem. Let p(x) be an arbitrary polynomial equation
over C such that for all x € C, we have p(x) #Z 0. As we have chosen
a non-identically zero polynomial, we can construct p(z) = 1/p(x),
which is well-defined. However, as x — oo, then |p(x)| — oo and
hence p(z) — 0. This shows that p(z) is bounded. Nonetheless,
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applying Liouville’s Theorem 4.1.2. to p(z) implies that p(z) should
be a constant polynomial equation, but this is a contradiction. As
a result, p(x) should have a solution for some x € C. This is a
restatement of the Fundamental Theorem of Algebra 4.1.1.

According to Ahlfors, “Liouville’s theorem leads to an almost triv-
ial proof of the fundamental theorem of algebra” (1979, p. 122). It
does not adequately explain why every polynomial equation must at
least have a root in C. The reason is that the theorem that plays a
significant role in the proof functions as a “black box”, something we
do not fully understand. Of course, the proof above could be modified
to incorporate the proof of Liouville’s Theorem 4.1.2 such that the
resulting proof becomes explanatory. However, we have a proof via
Liouville’s Theorem 4.1.2 that fails to explain why Algebra’s Funda-
mental theorem holds properly. The proof sketched above addresses
a salient feature of the polynomials and traces it back to the premises.
While the proof above might be considered explanatory according to
salience theory, it does not seem to be the case.

This example points towards a more significant issue with salience
theory: it fails to capture the objective aspect of mathematical ex-
planation. In line with explanatory realism, a bona fide instance
of explanation should provide a determination relation between the
items within the explanandum and the items within the explanans.
In mathematical explanations, such determination relation is between
the truth of the proposition being proven and the truth of the items
proving it. However, salience theory fails to capture this significant
aspect of mathematical explanations. Consequently, salience theory

fails to capture that the whole proof relies on an unexplained “black
box”.23

With this critical overview of salience theory, let us begin dis-
cussing two complementary arguments for DT.

»The separatist grounding theory can differentiate between this proof and a
full proof of the Fundamental Theorem of Algebra. The proof using Liouville’s
Theorem only verifies that some grounds exist without revealing those grounds.
While it indicates that the Fundamental Theorem of Algebra could be proved
using Liouville’s Theorem, it falls short of offering a fully explanatory proof of the
Fundamental Theorem of Algebra as it fails to reveal the specific grounds involved—
it merely verifies the existence of such grounds without revealing their nature. So,
although there are cases where salient features of a theorem could motivate research
or even be considered indicative of a proper explanation, it does not entirely capture
how the truth of an explanandum holds, in virtue of the truth of the explanans.
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4.2. It Happens Because it Happens!

The first complementary argument revolves around the existence of
mathematical coincidences. According to Lange, mathematical coin-
cidence refers to facts that are coincidentally true and lack a common
explanation® (for further details, see Lange 2010). Lange argues that
if mathematical explanation is to explain some fact by tracing it
back to its grounds, then every mathematical fact should have an
explanation. Furthermore, Lange considers the existence of mathe-
matical coincidences as evidence in favor of the salience theory. This
is because if a mathematical phenomenon enjoys no salient features,
there will be no explanation for it.

Opponents of DT can also account for the existence of coinci-
dences in mathematics. They would argue that, in these cases, we
have mathematical facts that do not warrant explanation within ev-
eryday mathematical practice. Moreover, explanations of these phe-
nomena are minimal because they are not typically considered de
jure explanations (i.e., fruitful explanations from the viewpoint of
everyday mathematical practice), although in some of these cases, we
do have a de facto explanation that is not considered a good expla-
nation in terms of everyday mathematical practice. For opponents
of DT who also advocate for a separatist view of grounding rela-
tions, another resource for addressing the existence of coincidences
in mathematics is the duality thesis, which states that the grounding
relation is not the same as the explanation that it backs. The former
is a determination relation in a non-causal domain, whereas the latter
is an explanation backed by the former. In certain coincidence cases,
while we are aware of the existence of a determination relation, we
lack a full understanding of it. In these cases, these facts are consid-
ered coincidental until a full explanation is available.

A mathematical fact that seems coincidental is not unexplainable
forever. A conjunction may appear to be a mere coincidence. How-
ever, once connections to other parts of mathematics are found, we
might come up with explanations of the prima facie coincidental
mathematical facts. The absence of a common explanation is not
evidence of absolute unexplainability. Lack of a common explanation
indicates that we are yet to find a ground. The point is illustrated
below through the distribution of the prime numbers among the
natural numbers.

2T agree with Lange that there are coincidences in mathematics, but some math-

ematicians reject the existence of any coincidences in mathematics. For example,
Davis (1981) believes that any seemingly coincidental fact pertains to a general law.
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Consider the distribution of prime numbers among the natural
numbers. As Zagier puts it, “the prime numbers belong to the
most arbitrary and ornery objects studied by mathematicians” (Za-
gier 1977, p. 7). To illustrate, when examining the distribution of
prime numbers among the natural numbers, no common pattern or
explanation emerges. Consider the following plot, which shows the
distribution of prime numbers up to 500:

Distribution of Prime Numbers up to 500
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As we can see, the gap between the two prime numbers exhibits no
general pattern or a striking feature. Furthermore, we know that for
any natural number n, there exist n consecutive natural numbers that
are not prime. To illustrate, consider (n+ 1)!+2, (n+ 1)1 +3, ...,
(n+ 1) +n+ 1. The first element (n+ 1)! + 2 is divisible by 2, the
second element (n + 1)! + 3 is divisible by 3, and the nth element
is divisible by n + 1. Therefore, these successive numbers are not
primes. This suggests that there are arbitrarily large gaps between
prime numbers. To borrow Zagier’s metaphor, prime numbers “grow
like weeds among the natural numbers, seeming to obey no other law
than that of chance, and nobody can predict where the next one will
sprout” (1977, p. 7).

However, this seemingly coincidental phenomenon turns out to
point toward a deeper mathematical fact. According to Diamond
1982, no detailed information was known about the distribution of
prime numbers in ancient times; however, “at the end of the 18th
century, [...] the ‘right question’ about the distribution of primes
was asked and a conjectured answer offered by A.M. Legendre [Leg]
and by C.F. Gauss [Gau]” (p. 553). To be more specific, let 7(x)
denote the number of prime numbers less than x. Then the prime
number theorem states:

m(x)

X
log(x)
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So, as x increases, the following ratio converges to 1:

(%)

lim =1
x—>00

log x

This repeats the Prime Number Theorem, which was conjectured
based on empirical observations by mathematicians like Carl Frie-
drich Gauss and Adrien-Marie Legendre in the late 18th and early
19th centuries and was proved in 1896 (Diamond 1982, p. 554). This
convergence is illustrated in the following diagram, with the dotted
curve intended to represent 7(x) and the dashed curve representing
illustrating how it approximates the other curve as x grows:
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The prime number theorem suggests that the distribution of prime
numbers, initially assumed to be a purely coincidental phenomenon,
is not entirely random. Further analysis shows that as x increases,
m(x) shows some predictable behavior. Nonetheless, as Diamond em-
phasizes, these studies were prompted by the “right questions” about
the distribution of the prime numbers. Indeed, the observations made
by Gauss and Legendre, who “recast the prime distribution question
in a statistical form” (Diamond 1982, p. 553), motivated the stud-
ies in the later century that led to the proof of the prime number
theorem. However, we saw earlier that the distribution of the prime
numbers, prima facie, shows no pattern and thus lacks any striking
feature except for its complete randomness.

DOI:https://doi.org/10.22201/iifs.18704905¢.2025.1658 Critica, vol. 57, no. 169 (abril 2025)



52 MOHAMMAD MAAREFI

This example shows not only that a seemingly coincidental mathe-
matical fact may have an explanation, but also that, for the purposes
of mathematical research, salient features of a mathematical fact may
even be a wrong call. The “right questions”, however, are those
prompting mathematical research, consequently leading to a slight
improvement in the direction of problem solving and finally offering
a genuine explanation.

4. 3. Context-Shift and Mathematical Explanation

Another complementary argument arises from the context-shift.
Lange states, “Which feature of a theorem is salient (and whether
it has any salient feature at all) depends on the context. Indeed, as
the conversational context shifts, a feature that had been salient can
retreat into the background as a new feature becomes salient.” (2019,
p- 14). Lange argues that proofs identifying a fact’s grounds, such
as those using brute-force methods, lack flexibility in adapting to
different contexts. To illustrate, Lange remarks,

A brute-force approach is not selective in its focus; it simply plugs
everything in and calculates everything out. In contrast, an explanation
must (on this proposal) pick out particular features of the setup that
are similar to the result’s salient features, tracing the result’s salient

feature back to them. (2019, p. 13)

Steiner discusses a similar issue in 1978 (p. 149), noting that some
explanatory proofs contain a “nub of the explanation” (i.e., the core
of the proof). He addresses this in the context of discussing the
explanatory nature of Galois groups in a proof.

Opponents of DT can account for what Lange refers to as context-
shift and Steiner as the nub of explanation. According to the duality
thesis DuT, the metaphysical relation of grounding differs from the
grounding explanation it supports. While the existence of the ground-
ing relation is a metaphysical issue (a determination relation in a
non-causal domain), and is not context-dependent, the grounding ex-
planation it backs depends on the context. Furthermore, what Steiner
considers the “nub of the explanation” also depends on the context. A
proof sketch (i.e., a short survey of the main steps of a proof) might
suffice for an expert, while a detailed proof offers a better understand-
ing for a lay reader. This discussion touches on the subjective aspect
of mathematical explanation, which involves producing an enhanced
understanding of a mathematical fact (i.e., the explanandum) based
on other mathematical facts (i.e., the explanans). Thus, opponents
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of DT can account for the context shift, arguing that the subjective
aspect of the explanation is context-sensitive, among other factors.
In addition, opponents of DT who embrace the separatist theory
of grounding (i.e., DeT¢, DuT, and TrT) can account for cases of
interpretations in the practice of mathematics. The interpretations’
raison d’étre is to study a structure in terms of another structure
because the latter is simpler or easier to understand.?” For instance,
model theorists sometimes interpret a complicated first-order struc-
ture in a simpler one. According to Marker (2002), any structure
in a countable language can be interpreted in a graph. To borrow
Hodges’ words “When a structure B is interpreted in a structure
A, every first-order statement about B can be translated back into
a first-order statement about A, and in this way, we can read off
the complete theory of B from that of 4” (2022, section 2). There-
fore, whenever we interpret a structure into another, the sentences
regarding one structure will be translated into those pertaining to the
other (with possibly a different language). This shows that, in a more
general framework, the separatist theory of grounding can account
for what Lange describes as context-shift. The following definition is

from Marker (2002):

Definition 4.3.1. An Lo-structure N is definably interpreted in an L-
structure M if and only if we can find a definable X C M™" for some
n and we can interpret the symbols of £ as definable subsets and
functions on X...so that the resulting Ly-structure is isomorphic

to V.

Here is an example illustrating how such interpretations change
the context. Consider the multiplicative group of invertible matrices
with entries in K, i.e., (GL,(K),+,e). This structure is definably
interpreted in (K, +,-,0,1) for a field K. The language for the former
structure differs from the latter (the pure field structure). They enjoy
different structures and different settings. However, the former is
definably interpreted as the latter.

Let us see how the separatist theory of grounding (i.e., DeTg,
DuT, and TrT) can account for cases of interpretations and context
shifts. Let 4 be a true sentence in (GL,(K), -, e). Let [B] be a ground
for [4] in (GL,(K),-,e). By DeT¢, the truth of [B] determines

% Sometimes, mathematicians choose to interpret one structure into another not
just for simplicity but also because such interpretations yield a mathematical fact that
connects with better-understood mathematical facts. In these cases, mathematicians
describe a fact up to the level of definable interpretation.
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the truth of [A] in an explanatory way. Interpret (GL,(K),-,e) in
(K,+,-,0,1) and translate 4 to C in (K,+,-,0,1). We obtain a
different ground for [C], say [D]. Since [C] is the interpreted version
of [A] in (K, +,-,0,1), and due to the transitivity of grounding TrT,
we have

[D] < [€] < [4].

Therefore, [D] < [A]. This shows that the separatist theory can
account for context shifts, such as from the context of invertible
matrices to the context of fields.

Finally, the main reason Lange claims that grounding is not com-
patible with context-shift is his specific view of the grounding rela-
tion, particularly the role of discriminatory AGT in his arguments.
In contrast, a separatist theory of grounding, like the one presented
here, is compatible with context-shifts and is generally a more suit-
able notion for describing the complexities of mathematical practice.
This includes the existence of multiple proofs for a single theorem,
context shifts, and the overall practice of mathematical research.

5. Conclusion

In summary, Lange’s defense of the Divergence Thesis DT, which
posits that mathematical explanations are not a variety of grounding
explanations, relies on several arguments that ultimately prove in-
sufficient. Through a minimal separatist theory of grounding, AGT
lacks the discriminatory power necessary to sustain Lange’s claims.
Furthermore, discriminatory AGT is a dubious statement both from
a grounding-theoretic point of view and the viewpoint of everyday
mathematical practice. The arguments from purity and salience fail
to adequately support DT, as they either introduce circular reasoning
or fail to provide an adequate account of the intricacies of mathemat-
ical practice. Finally, Lange’s additional arguments motivated by his
salience theory are insufficient to support DT, as they seem to be
corollaries to the two main arguments. Finally, this research could
offer new insights into how we understand the connection between
grounding explanation and mathematical explanation. Considering
the current discussion, Lange’s arguments, although insufficient to
support DT, suggest that if we are to understand mathematical ex-
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planation in terms of grounding, it must be through a separatist
theory of grounding.?
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