
CRÍTICA, Revista Hispanoamericana de Filosofía. Vol. 39, No. 117 (diciembre 2007): 61–86

THE COMPLETENESS
OF THE REAL LINE

MATTHEW E. MOORE
Department of Philosophy

Brooklyn College
matthewm@brooklyn.cuny.edu

SUMMARY: It is widely taken for granted that physical lines are real lines, i.e.,
that the arithmetical structure of the real numbers uniquely matches the geomet-
rical structure of lines in space; and that other number systems, like Robinson’s
hyperreals, accordingly fail to fit the structure of space. Intuitive justifications for
the consensus view are considered and rejected. Insofar as it is justified at all, the
conviction that physical lines are real lines is a scientific hypothesis which we may
one day reject.
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RESUMEN: En general se asume que las líneas físicas son líneas reales, esto es,
que la estructura aritmética de los números reales corresponde de manera única a la
estructura geométrica de líneas en el espacio, y que otros sistemas de números, como
los hiperreales de Robinson, no logran corresponder a la estructura del espacio. En
este artículo se examinan y rechazan las justificaciones intuitivas de la posición de
consenso. En la medida en que pueda estar justificada, la convicción de que las líneas
físicas son líneas reales es una hipótesis científica que algún día podríamos rechazar.

PALABRAS CLAVE: infinitesimales, geometría, espacio, continuidad

All of us, at some point in our high school careers, are introduced to
the picture of the real line in Figure 1. As time goes on, and we are
repeatedly exposed to this picture in various contexts, we may come
to view it both as a geometrical representation of a certain number
system —R, the real numbers— and also as a schematic representa-
tion of a property of lines in physical space, namely, that the points
on such lines can be brought into a certain kind of correspondence
with the elements of R.
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Figure 1. The Real Line
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How do we know that this picture, construed in the second way,
is complete, i.e., that it tells the whole story? How do we know
that there aren’t, on physical lines, points way over to the right,
after all the real points, which would need infinitely large positive
coordinates, and points way off to the left which would need infinitely
large negative ones? How do we know that there isn’t a little stretch
of the line around each real point, in which there are no points at all
with real coordinates? The points thus clustered around a real point
p would all lie infinitely close to it: their respective distances from p
—and thus also their respective distances from one another— would
be infinitesimal, i.e., less than any positive real number.

Figure 2 (derived from Keisler 1994, p. 212, Figure 1) is a picture
of the hyperreal line, which has the features just listed. Like the more
familiar Figure 1, this picture corresponds to a number system, this
one known as the hyperreals H, discovered by Abraham Robinson
around 1960.1 The hyperreals are a superset of the reals, and have all
the first-order properties of the latter; we call the real elements of H
standard and all the rest nonstandard. Robinson’s work should lay
to rest any lingering doubts about the logical status of infinitesimals,
which Berkeley, Russell and others had seen as flat-out inconsistent.
But if no logical contradiction lurks beneath the surface of Figure 2,
then how are we to account for the consensus that rejects it, in favor
of Figure 1, as a depiction of lines in space?2 More picturesquely:
how do we know that physical lines are real lines, and not hyperreal
lines?

1 The rigorous study of non-Archimedean number systems did not begin with
Robinson. See, in addition to Ehrlich’s recent historical survey (Ehrlich 2006) and
the essays in Ehrlich 1994, Robinson’s own historical remarks in Robinson 1996,
pp. 277–279.

2 Putnam touches on this consensus in Putnam 1979, p. 64: “Consider the basic
postulate upon which the subject of analytical geometry is founded (and with it
the whole study of space in modern mathematics, including the topological theory
of manifolds). This is the postulate that there is a one-to-one order preserving
correspondence between the points on the line and the real numbers.” Explicit
endorsements of the consensus are scarce in the literature, but I have found it to be
alive and well in discussions of the question with both philosophers and physicists.
Those who recognize the need for an argument tend, like the great figures discussed
on pp. 73ff below, to fall back on intuition: hence the present essay.
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Figure 2. The Hyperreal Line

Taken at face value, and against the background of a standard sci-
entific education, this question presupposes that space has a geomet-
rical structure, that it comprises objects like points, lines and planes,
together with such relations among those objects as incidence (lying
on), betweenness and congruence.3 The most venerable account of
these objects and relations is of course that given in Euclid’s axioms,

3 It also presupposes that the real numbers are a well-defined structure, a suppo-
sition that is open to a number of skeptical objections, which cannot be countered
simply by observing that real analysis is categorical and hence that the reals are
unique up to isomorphism. This is a fully satisfying answer only if there is a unique
intended model for the underlying set theory; and of course a Skolemite relativist,
or one sufficiently impressed by the abundance of models of set theory afforded
by forcing, will balk at the latter assertion. Without pretending to have a decisive
response to these varieties of set-theoretic skepticism, I am taking it for granted here
that there is a set-theoretic universe which the axioms of ZFC correctly describe, in
part. If one rejects that, then the claim that physical lines are real lines becomes
deeply problematic at the outset. My focus here is on the questions that remain if we
grant that set theory and real analysis have well-defined subject matters. (For obvious
reasons, I cannot avail myself of Thomas Weston’s solution to these problems: “I
can say perfectly well what the continuum is. . . it’s the sequence of points traced
out by the center of mass of my pen as I write” (Weston 1976, p. 295).)
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which were put into a corrected and more analytically perspicuous
form by Hilbert in his Foundations of Geometry (Hilbert 1899).4

Hilbert’s axioms come in five groups, the first four comprising the
Axioms of (I) Incidence, (II) Order, (III) Congruence and (IV) the
Parallel Postulate. Let us call a geometrical system satisfying Groups
I–IV a manifold.5 A manifold is a three-dimensional space (in the
abstract sense of ‘space’) in which many of the theorems of Euclid’s
Elements will hold good.

Among the Euclidean theorems we cannot prove from Hilbert’s
first four groups are those relying on continuity assumptions like the
one Euclid himself tacitly invokes in proving his very first propo-
sition, where he takes for granted —what is neither an axiom nor
a theorem of his geometry— that two overlapping circles will have
a point in common. Hilbert makes up this difference with the Ax-
ioms of Continuity in his Group V, which evolved a good deal down
through the several editions of the book. Dispensing with Hilbert’s
own formulations, we may summarize the group in a single axiom of
completeness as follows:

Completeness: Let all the points on a line be divided into two
non-empty sets SL and SR such that every point in SL lies to
the left of every point in SR. Then SL has a rightmost point if
SR has no leftmost one.

(The relations “to the right of” and “to the left of”, which I have
made use of here for clarity of statement, are easily definable from the
primitive relations of Hilbert’s axioms.)6 A complete manifold satis-
fies this last axiom (or, equivalently, satisfies the axioms in Hilbert’s
Group V) as well as the axioms in Hilbert’s first four groups.

A complete manifold is thus a three-dimensional system of points,
lines and the rest having all the geometrical properties of the abstract
spaces we study in high school analytic geometry, and a manifold
more generally conceived is a three-dimensional system having very

4 My discussion of Hilbert’s axioms is based on the English translation (Hilbert
1971) of the 10th German edition.

5 A referee points out, quite correctly, that ‘manifold’ already has a well-
established technical usage in topology and differential geometry. Readers familiar
with the term from those other contexts should bear in mind that I use it in the
sense just defined.

6 The defined relations have some additional complexity, which I have suppressed
in my statement of the Completeness Axiom. Given a line L and distinct points A
and B on L, we can define the relation “D lies to the left of C on L with respect to

the ray
�!
AB” as follows: C 6= D and either (i)

�!
CD � �!BA or (ii)

�!
BA � �!CD.
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many of those properties. Of course, what makes analytic geometry
analytic is the use of numerical coordinates, and I have yet to say
anything about them. Broadly speaking what we do when we apply
coordinates from a number system S to a manifold M is to assign to
each point of M an ordered triple of elements of S in such a way that
the geometrical structure of M is exactly mirrored by the arithmetical
structure of S. So among other things the betweenness relation that
orders the points of M will get captured by the arithmetical ordering
of the numbers in S: for instance, the point with coordinates (0, 1,
0) will lie between those with coordinates (0, 0, 0) and (0, 2, 0).

It turns out that the geometrical structure of a manifold sharply
constricts the class of number systems capable of providing coordi-
nates: only Pythagorean ordered fields will do. An ordered field F is
a number system with an addition operation + and a multiplication
operation �, both commutative and associative, both having identity
elements (0 for +, and 1 for �), and related by a distributive law. Ev-
ery element of F has an additive inverse, and every non-zero element
a multiplicative one. Finally, F has a linear ordering relation <, such
that the elements of F > 0 are related to those < 0 as the positive
rationals are related to the negative ones. The rationals Q are in fact
the smallest ordered field: any ordered field F has Q as a subfield. As
a result F also contains the natural numbers N and integers Z. An
ordered field is Pythagorean if it contains, for each of its elements
a, an element b such that b2 = 1 + a2. We call an ordered field
complete if whenever we partition it into two non-empty subsets S1
and S2 with every element of S1 less than every element of S2, S1 has
a greatest element if S2 has no least one. (The resemblances between
this algebraic version of completeness and the geometrical one on
page 64 are not accidental.)

Given a Pythagorean field P we can define a structure MP, the
Cartesian manifold over P, whose points are ordered triples of P, and
whose planes are solution sets of linear equations in three unknowns
with coefficients in P; we define the distance between two points
to be �(x, y) =d f

p(y1 � x1)2 + (y2 � x2)2 + (y3 � x3)2 and so on.
The Cartesian manifold over a Pythagorean P is a manifold, i.e., it
satisfies all the axioms in Hilbert’s first four groups (Hartshorne 2000,
p. 153). Now let M be an arbitrary manifold and P a Pythagorean
field. Then a P-scale on M is just an isomorphism f from M onto the
Cartesian manifold MP over P, i.e., a one-one correspondence that
preserves all geometrical properties and relations: lines are mapped
to lines, planes to planes, etc., and relations like betweenness and
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congruence in the two manifolds are mirror images of one another.
For betweenness, this means that the point p of M is (M-)between
q and r just in case the point f (p) of MP is (MP-)between f (q)
and f (r); likewise, for congruence it means that the segments pq and
rs of M are (M-)congruent just in case the segments f (p) f (q) and
f (r) f (s) of MP are (MP-)congruent, i.e., just in case �( f (p), f (q)) =�( f (r), f (s)). We call the point with coordinates (0, 0, 0) the origin
of the scale.

If there is a P-scale on M we call P a scalar system for M. The
kind of rectangular coordinatization we study in high school is a
special case of this more general notion of a scale, viz., the special
case in which our scalar system is the real field. Here are a few key
facts about scales and manifolds. What I will call the Scalar System
Theorem says that every manifold has exactly one scalar system and
that every Pythagorean P is the scalar system for some manifold.
The Uniqueness Theorem says that if M is complete, then its scalar
system is R.7 It is an easy exercise in high school analytic geometry
to define, given an R-scale on a manifold, a one-dimensional (one-
coordinate) scale on any line of the manifold, and conversely to
extend a one-dimensional scale on a line to a three-dimensional scale
on the whole manifold.8 This carries over into our more general
setting, and guarantees that there will be a P-scale on M just in case
there is one on each line of M; we may accordingly view any given
scale indifferently, in keeping with the exigencies of the moment, as
defined either on the whole manifold or on just a single line. We
will find it helpful later on to have in hand the notion of a P-rule on
a line L: this is an order- and congruence-preserving bijection from
a (possibly proper) subset of L onto P. Whereas a scale assigns a
coordinate to every point of L, a rule may miss some. If h were an
H-scale, for instance, on the line in Figure 2, the restriction of h to

7 These are extensions to three dimensions of theorems for the plane; for proofs
of the latter, see Hartshorne 2000, pp. 187–190.

8 For the first of these, we choose an arbitrary point o on our line L to get
the coordinate 0 and then use the Euclidean distance formula, together with a
designation of the points of L on one side of o as negative and those on the other
side as positive, to assign coordinates to the rest. For the second, we let the line
L with the scale serve as our x-axis and choose two lines orthogonal to L and to
one another as the other axes, along with positive and negative directions on each.
We then copy the scale on L onto the other axes, padding the coordinates out to
coordinate triples by adding two zeroes in the appropriate slots. The coordinates of
points off the axes are determined in the usual way by taking the perpendicular
distances to the axes.
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the points whose h-coordinates are real would be an R-rule on the
line.

in�nitesimalspositive
0 1

2 1
Figure 3. Incompleteness of the Hyperreal Line

Now let us return to and reformulate our original question about
real versus hyperreal lines. Departing somewhat from the physical
facts as we now understand them (though not in any way that will
affect the general points I wish to make) let us take it for granted
that space is a manifold. It follows by the Scalar System Theorem
that space has a scalar system S, which is a Pythagorean field. Since
H and R are both Pythagorean, either one could —for all we have
said so far— be S; by the uniqueness in the Scalar System Theorem
these are mutually exclusive alternatives. Our original question boils
down to that of how we know that S is R and not H.

By the Uniqueness Theorem we could single out R, and rule out
H, by showing space to be complete. To get an idea of what is at stake
here, let us consider what space would be like if it were not complete.
For definiteness, suppose that S = H, let f be an H-scale on L, let SL
be the set of all points of L with negative or infinitesimal coordinates,
and let SR be all the rest. Because the sum of two infinitesimals is
itself infinitesimal, SL has no rightmost member. Because every finite
hyperreal lies infinitely close to a standard real, and there is no least
one of those, SR has no leftmost member. But SL and SR satisfy all
the hypotheses of the Completeness Axiom, so they dramatize the
incompleteness of the hyperreal line (Figure 3).

Perhaps the following vignette will make the strangeness of this
more vivid. Let Abby and Richard be infinitely small astronauts
travelling towards one another along the straight line segment S; for
simplicity suppose that Abby’s starting point oA lies 1 meter away
from Richard’s. Richard’s speed varies so that his distance from oA
after one hour is 0:5 m, after two hours 0:25 m, after three 0:125 m,
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etc. If he travels long enough, even at this ever-decelerating pace,
Richard will eventually pass through every point that lies a finite
distance from oA. Abby, on the other hand, travels at " meters per
hour, for a fixed infinitesimal " > 0. If he travels long enough he will
eventually pass through all the points Richard never gets to, the ones
lying infinitely close to oA. Abby and Richard would thus traverse,
on their respective journeys, all the points on S, but no point on S
would be visited by both of them.9

You may now find yourself wanting to protest that space certainly
cannot be like that, that this is a reductio ad absurdum of the
suggestion that physical lines might be hyperreal lines. If so, then
ask yourself where the contradiction lies, what the absurdum is that
makes this a reductio. You might feel that the force of our vignette is
to highlight a certain feature of hyperreal lines, a feature we can just
see that physical lines lack. If so, you would not be alone. Appeals to
some kind of “seeing” are a staple of debates over the infinitely small:
the unimaginability of infinitesimals is a major theme of Berkeley’s
Analyst, and I have heard the question “have you ever seen an
infinitesimal?” thrown down as a challenge to Robinson’s hyperreals.

Most of us believe that there are stretches of space too small to
be seen, even with a very powerful microscope; certainly anyone who

9 This vignette has been carefully worded to avoid further —and in the present
context extraneous— complications arising from the ordering of the Robinsonian
infinitesimals. It would be nice if we could have Abby and Richard travel in lock-
step so that, e.g., after n hours the former lay n � ", and the latter 2�n, meters
away from oA. The trouble is that though this would get Richard through all of his
points, it would not get Abby through all of his; for there will be points infinitely
close to oA whose distance from it exceeds n � " meters for any standard natural
number n. Abby would have to travel an infinitely long time —he would have to
travel m hours for some infinite (hyper)natural number m— in order to reach such
a point. So it means one thing to say that Richard will “eventually” pass through all
of his points, and another to say that Abby will “eventually” pass through all of his.

It might seem that we could make “eventually” univocal by allowing Abby’s speed
to vary, by choosing points pi, i 2 N, whose distances di form a monotone increasing
sequence of infinitesimals, such that in passing through all the pi Abby would pass
through all the points infinitely close to oA but without hitting any that lie at a
finite distance from it. But this won’t work either, not even if we make no attempt
to choose the pi in a nice rule-governed way, as we do with Richard’s points; for
any monotone increasing sequence of infinitesimals di, i 2 N, has an infinitesimal
upper bound (Goldblatt 1998, p. 140). I have passed over these complications in
the body of the paper because they involve time as well as space, and the purpose
of the Abby/Richard example was to make vivid the geometrical strangeness of the
hyperreal line. Of course if we wanted to do physics with that line, and in particular
to bring it into our analysis of motion, time would have to come into the picture,
and these further complications would have to be faced up to.
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believes in R-scales on the line, or takes modern physics at face value,
is committed to such stretches. So these invocations of “seeing”, if
they are supposed to cast doubt on infinitely small stretches, cannot
just be straightforward appeals to perception, since the latter does not
even take in all the finitely small stretches we believe in. Presumably
the “seeing” in question is supposed to be some kind of intuition,
some faculty whereby we gain direct access to objects which is, in a
famous phrase of Gödel’s, “something like a perception” (Gödel 1947
(1960), pp. 483–484).

‘Intuition’ is a big word in philosophy, and not all of the philo-
sophical uses to which it has been put fit this mold of “seeing”
objects.10 I will concentrate here on one that does fit that mold,
which (following my usage in Moore 2002) I call quasi-sensory intu-
ition, whereby we allegedly learn about the world by reflecting on
our mental images, and our capacity or incapacity to form images
of certain kinds. The great advantage of quasi-sensory intuition is
its reliance on data with regard to which there is a good deal of
intersubjective agreement. Its great disadvantage is the inferential
gap between assertions about our imaginative capacities and asser-
tions about the world around us: why should we take the former
as a reliable guide to the latter? This is a fatal flaw if one believes
that there are R-scales on the line; for in that case there are plenty
of geometrical configurations we cannot imagine: just think of your
favorite function whose graph contains infinitely many oscillations on
some bounded interval (sin(1/x)on (0, 1] will do the job: see Spivak
1994, p. 63, Figure 20). The unimaginability of incompleteness does
not give us much reason, if we bear such examples in mind, to believe
that the line must be complete.

Such considerations as these make it obvious to me that we do
not have intuitively grounded knowledge of the completeness of the
line.11 But experience has taught me that this is far from obvious

10 One kind of intuition with a long philosophical pedigree, which I will not take
up in the body of this paper, is rational intuition, which in the case in hand could
assure us —in a way that does not involve access to objects— that it is somehow
“of the essence” of the line that it should be complete. This would be an instance of
what Charles Parsons calls “intuition that”, whereas I will focus here on what I find
to be a particularly plausible instance of what Parsons calls “intuition of”. On the
distinction between these two kinds of intuition, see Parsons 1979–1980, p. 96 and
Parsons 1995, pp. 58–59. The challenge for advocates of “intuition that” is showing
that their intuitions are more than “gut feelings” with no particular epistemic force.
For a somewhat more extended treatment, see Moore 2002, pp. 186–189.

11 In Moore 2002, which is something of a companion piece to this one, I consider
and reject intuitive justifications for the Archimedean Axiom.
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to many. So let me make the point at greater length by taking a
close look at a couple of sections from Dedekind’s “Continuity and
Irrational Numbers” (Dedekind 1872)12 where we find a pellucid
exposition of the geometrical motivation for his definition of the real
numbers as cuts of rationals. What Dedekind is after is a number
system that can, so to speak, use up all of the points on the line.
If we come to Dedekind’s text assured that the line is complete, we
will find in these preparatory sections of “Continuity and Irrational
Numbers” a particularly felicitous review of what we already know;
if our dogmatic slumbers have already been disturbed, though, those
sections may only make us more wakeful still.

Dedekind’s § II is entitled “Comparison of the Rational Numbers
with the Points of a Straight Line”, and begins with the observation
that the points on a line have order properties corresponding exactly
to order properties (already enumerated in his § I) of the system Q of
rational numbers. We can sum up his observations in contemporary
terms by saying that the points on a line are, like Q, a model of
the theory of dense linear order without endpoints.13 An important
property of such a structure, for Dedekind’s purposes, is that any
of its elements q induces a partition of the whole domain, of the
sort mentioned in the Completeness Axiom: we put the elements less
than q into one half of the partition, and those greater than q into
the other, finally tossing q itself “at pleasure [into] the first or second
class” (7). (Thus q actually induces two partitions of the domain: by
saying that we dispose of q “at pleasure” Dedekind signals that this
is an extraneous complication.)

Dedekind then launches into his analysis of the “corresponding
relations of position of the points on a straight line L” (6) without
arguing for the claim that those relations do correspond to the rele-
vant order properties of Q. Here already we must be on our guard
against the unexamined assumption that we somehow see this corre-
spondence. Consider, for instance, density. This is Dedekind’s Prop-
erty II: “if p, r are two different points [on L], then there always exist
infinitely many points that lie between p and r” (7). Clearly this is
not true for the points and line segments we can draw; for the points
in that case are extended (in particular, non-infinitesimal) blobs of

12 In what follows I will give page references to this work by simply listing the page
number in parentheses —e.g., “(7)”— using the pagination of Beman’s translation
(Dedekind 1963, pp. 1–27).

13 Dedekind’s list of properties does not amount to a thorough axiomatization of
that theory, but he pretty clearly has the full theory in mind: he says that Q “forms
a well-arranged domain of one dimension extending to infinity on both sides” (5).
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ink, and only finitely many of them can fit in between any two. Nor
does density hold for imagined points and segments; the reasoning
is similar to that for the pen-and-paper case, but more complicated
because it has to do with the mental.14 It will not help to observe
—what can perhaps be established by way of thought-experiment—
that any two distinct points, just in virtue of their distinctness, have
space in between them where a third point may be interposed;15 for
even if this is true for imagined points, we need to be told why it
follows that the points on a physical line are like that.

Part of the problem here is that we have not yet said explicitly
what kinds of things points and lines are; perhaps when we have
done so it will be clear that we can justify the attribution of certain
properties to physical points on the grounds that they hold for imag-
ined ones. Euclid tells us that “a point is that which has no parts”,

14 Of course, if we can imagine regions infinitesimal relative to others, that clears
away one obstacle to imagining two points with infinitely many points in between;
in that case the reasoning from the pen-and-ink case would not carry over to an
imagined line segment. I take it to be obvious that we cannot imagine two regions
where one is infinitesimal to the other. If you do not, note that anyone says they
can imagine that will owe us an explanation of how they know that the smaller
region is infinitesimal, and it is hard to see how they can do that if they can only
imagine finitely many copies of the allegedly infinitesimal region (cf. Moore 2002,
p. 198). I am content to leave the burden of proof with those who maintain that our
imaginative capacities are not subject to the latter restriction. To be sure, even if
the burden of proof cannot be discharged, that shows only that we cannot know that
one imagined region is infinitely small relative to another. But that suffices for my
present purpose, which is not to show that physical lines, or even imagined lines,
are not dense; my point is rather that we cannot intuitively justify our belief in their
density by drawing or imagining points (which in order to be seen or imagined must
be extended) on lines.

15 We might seek, for instance, to ground this claim in the relatively modest form
of mathematical intuition explored by Parsons in Parsons 1979–1980. In § V of that
paper, he argues that elementary —and intuitively given— facts about figures against
a surrounding ground make intuitively evident the possibility of a structure (a string
of strokes) to which one more (stroke) can always be added. Analogously, we might
argue that to imagine two distinct points is to imagine points with an intervening
space in between, and that the very presence of that space makes it evident that
a third point can be introduced in between, and thus distinct from both of, the
original pair. But how do we know that the intervening space is not too small to
hold the new point? This might happen if there were some lower bound on the size of
points. It is hard to get a grip on the claim —which would obviate this worry— that
we can imagine arbitrarily small spatial regions, but even if we somehow convinced
ourselves that we could do that, we would still face the difficulty of getting from
there to the corresponding claim about points in space. The Euclidean notion of
an extensionless point frees us from worries about points being too big for some
britches —but extensionlessness of points is hardly a deliverance of intuition.
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and that “a line is breadthless length” (Euclid 1956, vol. 1, p. 153).
If points and lines are like that, then my cavils about blobs of ink
are clearly irrelevant. Unfortunately, so is the appeal to imagination;
for surely pictures in the mind, like pictures on paper, are only of
extended things. Because we all learn our geometry, for all intents
and purposes, from Euclid, it is tempting to think that we believe
his axioms because intuition shows us that they are true. But if we
are as modest as we should be about our intuitive capacities, this will
look to us like putting the cart before the horse: what we should say
is rather that Dedekind’s density claim seems obvious to us because
we believe Euclid’s axioms.

Dedekind’s next move is to say that (a) we can define Q-rules (see
p. 66 above) on the line; and his next move after that is to say that
(b) no such Q-rule is a scale, i.e., that no Q-rule has all the points on
the line in its domain. There is no more hope than there was with
density of resting (a) and (b) on intuitive grounds. But, as before,
we can easily justify (a) and (b) on the basis of Euclid’s axioms,
which enable us to construct, given an origin on the line and a unit
length, all of the rational lengths (rational, that is, with respect to
that unit) and some irrational ones as well.

Dedekind concludes that these facts about the line make it “ab-
solutely necessary that [ . . . ] the rational numbers be essentially im-
proved by the creation of new numbers such that the domain of
numbers shall gain the same completeness, or as we may say at once,
the same continuity, as the straight line” (9). Since no Q-rule is a
scale, we must properly extend Q if we want every point to get a
coordinate.

‘Continuity’ is here put forth as the name of that geometrical prop-
erty to which Q, as a putative source of coordinates, is inadequate.
After some methodological remarks about the proper relationship
between geometry and arithmetic, Dedekind poses the crucial ques-
tion: “In what then does this continuity consist?” (10). His answer is
that we

find the essence of continuity in [ . . . ] the following principle: “If all
the points of the straight line fall into two classes such that every point
of the first class lies to the left of every point of the second class, then
there exists one and only one point which produces this division of
all points into two classes, this severing of the straight line into two
portions.” (11)
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Dedekind’s principle is of course just the Completeness Axiom; I will
accordingly use ‘completeness’ to denote the property that Dedekind
denotes by ‘continuity’, and use the latter to denote the more or less
vaguely defined property which the sharper notion of completeness
is supposed to capture more exactly. If space is complete, then by
the Uniqueness Theorem (p. 66) Dedekind’s extension of Q by the
method of cuts16 —a.k.a. R— is the scalar system S for space.

But is space complete? We have already seen that we cannot fall
back here, as we could with density, on Euclid’s axioms: unless we
beg the question by assuming the Completeness Axiom, those axioms
tell us only that S must be Pythagorean. This does imply that it must
be a proper extension of Q, which lacks many of the requisite square
roots; but S could, consistently with the axioms in question, be much
smaller than R, in which case space would be incomplete.

Dedekind’s own view of the matter is very cautious: “If space has
at all a real existence, it is not necessary for it to be [complete]; many
of its properties would remain the same even were it [incomplete]”
(12). He does, however, seem to hold that when we imagine a contin-
uous line, we are imagining a line with this property of completeness:
“if we knew for certain that space was [incomplete], there would be
nothing to prevent us, in case we so desired, from filling up its gaps,
in thought, and thus making it [complete]; this filling up would
consist in a creation of new point-individuals and would have to be
effected in accordance with the above principle” (12). Dedekind thus
shows commendably little sympathy for the idea that we know by
intuition that the line is complete. His modesty on that score does
not prevent him, however, from claiming that his conception of con-
tinuity, whether or not it holds good of physical lines, is the only way
of making precise our pre-theoretical understanding of what it would
be for the line to be continuous: he says that the imaginative “filling
up would have to be effected in accordance with [his] principle” [my
emphasis]. He admits that he is “utterly unable to adduce any proof
of [his account’s] correctness, nor has anyone the power”. But he
says that he thinks he will “not err in assuming that every one will
at once grant [its] truth” (11).

But alas, as even a cursory glance at the philosophical literature
on the continuum will show, Dedekind does in fact “err in assuming
that every one will at once grant” the truth of his account. Peirce,

16 A non-empty proper subset C of Q is a (left) Dedekind cut just in case it has
no greatest element and is closed under < (i.e., for every a 2 C, b 2 C provided
that a > b 2 Q).
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Gödel and Weyl are just three of the estimable thinkers who have
doubted whether our intuitions about continuity are adequately cap-
tured by Dedekind’s definition.17 I will focus mainly on an argument
of Gödel’s, but before taking that up I want to say a few words about
one due to Peirce, which is well worth a substantial digression, both
because it supports a very radical alternative to Dedekind’s view, and
also because it turns on considerations about time, which with my
emphasis on space I have left mainly on the sidelines.

To begin, then, with the radicalism. The primary alternative I
have mentioned, to the view that physical lines are real lines, is
a relatively conservative one: it replaces one Pythagorean field with
another, while hanging onto all the other assumptions of the standard
view.18 In particular, it hangs onto the assumption that a line is a
structured set of points; lines, on this view, are ontologically parasitic
on the points that compose them. Peirce’s more radical alternative
reverses the ontological dependency: for him it is the continuum
that is prior, with points and point sets reduced to constructions,
within the continuum, of (collections of) discontinuities whose exis-
tence before the construction is merely potential. There is an obvious,
and oft-remarked, affinity here with intuitionistic conceptions of the
continuum, but Peirce does not share the intuitionists’ distaste for
completed infinities.19 He maintains, in fact, that for any cardinal
(and in particular, for any infinite cardinal) a point set of that cardi-
nality can be constructed on a truly continuous line.20

This non-punctuate conception of continuity is absolutely central
to Peirce’s later philosophy, and he gives a number of arguments for
it. I want to look briefly at one that he attached great importance
to, whose conclusion is that time is not composed of instants, and
contains infinitely small durations. The argument has deep roots in

17 I will concentrate here on Gödel and Peirce. Weyl discusses our intuitions about
continuity in Weyl 1921, pp. 92, 93–95 and Weyl 1925, pp. 123–124, 135.

18 All the assumptions, that is, that survive the switch to hyperreal coordinates.
19 For an excellent discussion of Brouwer and Weyl’s grounding of the intuitive

continuum in our consciousness of time, and the connections with Husserl’s phe-
nomenology, see van Atten, van Dalen, and Tieszen 2002, pp. 205–212.

20 This view of the continuum, and its descendants, are pervasive in Peirce’s writ-
ings from the 1890s on; see especially his expositions in the third (Peirce 1898b) and
eighth (Peirce 1898a) Cambridge Conferences Lectures, and also Peirce 1900. The
relevant secondary literature is large and growing, especially so since the publication
of Putnam 1992; particular mention should be made of the mathematical chapters
in Murphey’s pioneering study (Murphey 1961) and Havenel’s comprehensive dis-
sertation on the subject (Havenel 2006). Further references can be found in the
bibliography of Moore 2007.
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Peirce’s thinking, stretching back as far as 1868,21 but it comes into
full flower in 1892, in “The Law of Mind”:

How can a past idea be present? Not vicariously. Then, only by direct
perception. In other words, to be present, it must be ipso facto present.
That is, it cannot be wholly past; it can only be going, infinitesimally
past, less past than any assignable past date. We are thus brought to
the conclusion that the present is connected with the past by a series
of real infinitesimal steps.

It has already been suggested by psychologists that consciousness
necessarily embraces an interval of time. But if a finite time be meant,
the opinion is not tenable. If the sensation that precedes the present
by half a second were still immediately before me, then, on the same
principle, the sensation preceding that would be immediately present,
and so on ad infinitum. Now, since there is a time, say a year, at the
end of which an idea is no longer ipso facto present, it follows that this
is true of any finite interval, however short.

But yet consciousness must essentially cover an interval of time; for
if it did not, we could gain no knowledge of time, and not merely no
veracious cognition of it, but no conception whatever. We are, therefore,
forced to say that we are immediately conscious through an infinitesimal
interval of time. (Peirce 1892, pp. 314–315)

Peirce insists that if we are conscious only of our instantaneous men-
tal state, then the contents of that state are unavailable at subsequent
instants, with the disastrous consequence that we can have “no con-
ception whatever” of time. Therefore, our mental states must be
extended in time. But they must be infinitesimal in extent, on pain
of the equally disastrous result that we are directly conscious not just
of our present state but of all our past ones. There is a great deal
more to say about this argument, but I do not want this digression
to get out of hand, so I will content myself with a couple of brief
comments about the implications for spatial continuity of Peirce’s
treatment of temporal continuity. The argument just quoted does
not, by itself, entitle us to draw any conclusions about the structure
of space. In “The Law of Mind”, Peirce is mainly concerned with the
continuity of consciousness, but elsewhere he gives the continuity of
space a more extended treatment.22 There is of course strong theo-
retical pressure to have one conception of continuity, covering both

21 For more on this argument and its antecedents, see Moore 2007, pp. 427–431,
434–435.

22 See especially Peirce 1896(?), pp. 59–63.
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space and time.23 (In Peirce 1897(?), pp. 96–97, Peirce gives a direct
intuitive argument for the continuity —in his sense of the term— of
the line.)

Turning now to Gödel, his argument is summed up by Putnam
as follows: “at least intuitively, if you divide the geometrical line [in
two] you would expect that the two halves of the line would be mirror
images of each other. Yet, this is not the case if the geometrical line is
isomorphic to the real numbers” (Putnam 1992, p. 38). In particular,
one half will have an endpoint and the other will not.24

But to what intuitions is this consequence of completeness sup-
posed to run counter? To be sure, if I cut a Tootsie Roll right
down the middle, the two halves are (so far as I can tell by eye)
mirror images of one another, but why should I take this to reveal
anything about the nature of continuity? Thought-experiments like
Gödel’s highlight the shortcomings, not of Dedekind’s conception,
but of intuition as a source of adequacy criteria. My own image of a
continuous line is just a solid black strip against a white background:
it is the absence of whiteness on the strip, not the behavior of infinite
sets or sequences of points, that makes me deem such an imagined
line continuous. I expect that most people’s images of continuity are
nearer to mine than to that suggested by Dedekind’s conception, but
I don’t see why that should tell against Dedekind’s conception, any
more than Dedekindian intuitions should tell in favor of it.

It is one thing to say that there is no clear reason to privilege one
or another of these intuitions, qua intuition, about continuity over
the rest; it is quite another to say that when we develop any one of
these intuitions into a full-blown mathematical account of continuity,
that account is no better than one based on any of the others.
Dedekind’s conception of continuity gives rise to a mathematical
theory of great utility and power. And unlike my own intuitive notion
of “continuity as solidity”, the intuitions adduced by Gödel and the
others correspond to various mathematically interesting alternatives

23 It is considerations about consciousness that lead to Peirce’s denial that time
is composed of durationless instants and his affirmation of infinitesimals. Michael
Dummett argues for the denial, without the affirmation, as a way of banishing certain
problematic discontinuities from physical theory. One of his examples, of two ways
of instantaneously shutting off a lamp (Dummett 2000, pp. 501–502) is interestingly
akin to the Gödelian argument I am about to discuss. For more on that example,
see Ulrich Meyer’s critique (Meyer 2005, pp. 136–137) and Dummett’s response
(Dummett 2005).

24 Putnam and Ketner talk of dividing the line “at a point” rather than “in two”
as in my emended version of the passage. They cite an unpublished note of Gödel’s
as the source of the remark.
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to standard real analysis. Perhaps then we ought, instead of judging
each theory by its associations with one or another intuition, to judge
each intuition by its association with one or another theory.

I have mentioned the “great utility and power” of standard real
analysis, without saying just wherein its utility and power lie. Cer-
tainly the real field has turned out to be a fascinating mathematical
object, but mathematics abounds in fascinating objects: H is another
one. To deserve its pride of place, R must have more going for it
than that. Certainly one thing it has going for it is the organizing role
it plays in analytic geometry, and especially in the applied analytic
geometry we use to study physical space. And now we seem to have
come full circle; for our original question was how we know that the
reals, and not the hyperreals, are best suited to that organizing role.
But surely it counts for something that upon opening any text on
spacetime physics we find R —and not H— on every page. Perhaps
we have come full circle because this is where we should have stood
our ground in the first place.

Of course the original question was not whether R in fact dom-
inates physical geometry —it obviously does— but whether it has
to do so: whether there is any alternative. For the question to be
interesting it must be about alternatives that do not require us to
trade in a (largely) true physics for a (largely) false one, or otherwise
to degrade the state of science. So in posing our question we moot the
possibility that we might change our mathematics without prejudice
to our physics. If we cannot do that, if the physics we now have
falls apart without R as a scalar system, then we have good reason to
suppose that space is complete, and that physical lines are real and
not hyperreal lines. We would need, in that case, to be presented
with a different and better physics, based on H rather than R, before
we could reasonably throw over the real in favor of the hyperreal
line. We could then comfortably leave partisans of the latter with
the burden of proof, and stick with the former until they had met
that burden.

This defense of the real line is, at bottom, an inference to the best
explanation, an abduction. The fact —supposing that it is a fact—
that our best physical theories cannot get by without real coordi-
nates is, so the run-up to the inference goes, best explained by the
hypothesis that space is complete, that physical lines are real lines.
Alternatively (which is not to say equivalently) we may regard the
completeness of space as a hypothesis which is empirically confirmed
along with the physical theories in which it plays an indispensable
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role. This talk of indispensability and the empirical confirmation of
mathematical hypotheses should call to mind the names of Quine
and Putnam, who have urged that mathematics is inextricably woven
into our scientific theories in just the way that our imagined defense
of the real line requires.

This kind of abductive argument requires us to show that real
coordinates are in some sense necessary for some chunk of physical
theory we would be loath to give up. Consider, as a simple example,
Kepler’s Law of Areas, whose loss would be debilitating indeed for
Newtonian physics. In the De motu (De Gandt 1995, p. 22) (and
cf. Proposition 1 of Book I, § 2 of the Principia),25 Newton gives
a proof which begins by supposing that the force that impels the
moving body B towards the central point p comes in pulses, resulting
in the kind of polygonal path depicted in Figure 4. He then shows,
by a purely Euclidean argument (i.e., one requiring no ideas from the
calculus), that in this case the radial vector sweeps out equal areas in
equal times. He extends the result to the case we are really interested
in as follows: “Now let these triangles be infinite in number and
infinitely small, so that each triangle corresponds to a single moment
of time, and with the centripetal force then acting unremittingly, the
proposition will be established.”

p q1

q2

q3

B

Figure 4. The Law of Areas (discontinuous case)

Suppose for a moment that we could make detailed physical and
mathematical sense of this argument, and that no proof of the result

25 Newton 1999, pp. 444–445.
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were available that did not bring in, at some point, infinitely small ge-
ometrical objects. Then so long as Newton’s physics was the physics
of choice, we would be justified in holding that space actually con-
tained such objects. In that case we would have abductive grounds
for rejecting the real line (which leaves no room for infinitesimal
triangles) in favor of something more like the hyperreal one. But of
course it is hard to make detailed sense of the argument. For if one
of those little triangles T —say �pq1q2— really is a triangle, then
the vertices q1 and q2 on B’s path determine a straight line segment
of non-zero length, corresponding to a period of time in which B
cannot be subject to a force, since it is moving in a straight line.
So the centripetal force is not being exerted continuously after all.
If q1 and q2 do not determine a segment, then they are identical
and T is not a triangle but a line segment and so cannot contribute
—as Newton supposes it can— to the area swept out by B. Such
intimations of inconsistency would have to be set in the balance
along with the apparent indispensability of infinitesimals, in the days
before limits came along; but even then one would have been hard
put to argue abductively for the reality of physical infinitesimals,
when the mathematics of infinitesimals had not yet been shown to be
free of contradiction.

The situation is different, of course, with the Cauchy-Weierstrass
definition of limit, and the rigorous theory of real numbers that
it made possible. A proof of the Law of Areas, free of infinitely
small triangles, can be found in any number of modern calculus
texts: a particularly pleasing treatment can be found in Bressoud
1991 (pp. 18–24). The first and decisive move in the proof is to
suppose that the space in which the body is moving is a complete
manifold, and to represent its position, velocity and acceleration as
vector-valued functions of time. Physical assumptions —e.g., that the
acceleration is always directed towards the same central point— are
translated into mathematical assumptions about the manifold and the
functions; the Law of Areas is then proved as a fact about functions
and manifolds satisfying those assumptions. This gives us the raw
materials for our abduction, which goes as follows: the Law of Areas
is well-confirmed by our observations of the heavenly bodies, and
this is best explained by the hypothesis that the space in which those
bodies move is, like the manifold in the proof, a complete manifold.
This is a fairly weak abductive argument for the completeness of
space, because it puts completeness forth as the best explanation
for a single well-confirmed generalization. But if we could argue
similarly for other such generalizations, and found none that were
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best explained by the failure of completeness, the argument would
gather strength accordingly.

The point of the abduction is to show that the manifold is com-
plete, not just that it is a manifold, whose scalar system could be
any Pythagorean field. It is thus essential, for purposes of the ab-
duction, that the proof of the Law of Areas should depend upon the
completeness of the manifold. But it is not hard to formulate weaker
conditions on the manifold which will enable the proof to go through,
and are satisfied by H as well as R.

One such condition is that of being what I will call a transfer field.
A transfer field is an ordered field that satisfies every truth about
R expressible in the first-order language LR which has a constant
symbol for every real number and relation and function symbols for
all relations and functions on R. The reader can easily verify that,
e.g., Bressoud’s proof relies only on lemmas that hold good for any
transfer field. The Completeness Axiom, because it contains a second-
order quantifier, is not expressible in LR, and so a transfer field need
not be complete; in particular, H is a transfer field, and so the Law
of Areas would hold good (given the requisite physical hypotheses)
if lines in space were hyperreal lines.

One simple example casts very little light, of course, on the larger
question about real vs. hyperreal lines. But it does illustrate the kinds
of arguments that come into play, and gives us one case at least in
which physics can live without completeness, and so without real
lines. The condition of being a transfer field is not a very subtle
one, and like completeness itself is overkill for purposes of establish-
ing the Law of Areas: it would have been enough —at the cost of
complicating the verification left to the reader— to stipulate that the
scalar system of the manifold should be a model of first-order real
analysis (i.e., of the theory of ordered fields plus an axiom scheme
guaranteeing that each first-order definable subset of the field has a
least-upper bound if it is non-empty and bounded above). Feferman’s
elaborations of Weyl’s predicative theory of the continuum suggests
that first-order analysis too is overkill, across the board of physical
applications (Feferman 1998).

The abductive case for Completeness hangs in the balance of this
ongoing debate over the strength of scientifically applicable mathe-
matics. So even if physics in its present state gives us the final word
about the geometry of spacetime, we have some work to do before we
can abductively infer that physical lines are real lines. And even then
our assurance that Figure 1, and not Figure 2, gets physical lines
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right will be subject to change along with the state of physics. Our
understanding of physical geometry has already been overhauled in
the transition from classical to contemporary physics, from Newton
to Einstein; and basic geometrical hypotheses —including the conti-
nuity of spacetime— continue to be up for grabs along the advancing
front of physical theory. For example, in The Character of Physical
Law, Feynman guesses “that the theory that space is continuous is
wrong” (Feynman 1967, p. 166), mainly because it gives rise to the
troublesome infinities of quantum electrodynamics.26 Chris Isham,
in his survey of quantum gravity, calls the assumption of continuity
a “gross extrapolation from everyday experience”, and points out
(very much in the skeptical spirit of the present essay) that “the
construction of a ‘real’ number from integers and fractions is a very
abstract mathematical procedure, and there is no a priori reason why
it should be reflected in the empirical world” (Isham 1989, p. 72).
And Brian Greene, in his popular treatment of string theory, points
out that the “fundamental incompatibility between general relativity
and quantum mechanics” has to do with the small-scale geometry of
space: “The notion of a smooth spatial geometry, the central principle
of general relativity, is destroyed by the violent fluctuations of the
quantum world on short distance scales” (Greene 1999, p. 129).

I am not competent to offer any in-depth commentary on string
theory and its implications; but even an amateur can make a few ob-
servations that might help underscore and clarify some main points
of the present essay. First of all, string theory, like previous revolu-
tionary physical theories, revises our picture of spacetime geometry
in a highly counterintuitive way. To take just one example, it postu-
lates not four, but ten (Greene 1999, pp. 203–205) or perhaps eleven
(Greene 1999, pp. 308–312) spacetime dimensions —one temporal
and nine (or ten) spatial. We experience space as three-dimensional
because all but three of the spatial dimensions are “curled up”; much
as a garden hose (Greene 1999, pp. 186–196), viewed from the side
and at a distance, appears two-dimensional because one of its dimen-
sions “curls” away from the eye, the additional curled-up dimensions
of space are so small as to be indiscernible by sight. Hard to swallow,
to be sure, but arguably well worth swallowing for the lavish explana-
tory pay-off: the extra dimensions enable us to explain the apparent
jumble of particle masses and charges very elegantly indeed, in terms
of the vibrations of strings in all the dimensions, unfurled and curled
(Greene 1999, pp. 205–206). So the first point, already evident from

26 He takes up the theme again in Feynman 1988, pp. 128–129.
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relativity and quantum mechanics, is that intuition (other things be-
ing equal) is no match for explanatory power.

The second point is partly implicit in the foregoing example, and
is also more controversial (whence the ceteris paribus hedge in the
last sentence): it is that inaccessibility to direct observation is not an
insuperable obstacle to acceptance as well-confirmed. In a way this
is a platitude, though even so obvious a case in point as the history
of atomic theory raises subtle questions about just how far from
observation scientists are really prepared to stray27 and the works
cited there. In connection with string theory the point becomes still
less platitudinous, as empirical support is widely recognized to be
that theory’s Achilles’ heel.28 Even so, the mere fact that “[w]ithout
monumental technological breakthroughs, we will never be able to
focus on the tiny length scales necessary to see a string directly”
(Greene 1999, p. 215) does not disqualify strings from admission to
our scientific ontology; and I submit that the difference, on this score,
between things as small as strings and distances infinitely small, is
one of degree and not of kind. We might come to have evidence —no
doubt largely indirect— that would justify belief in either species of
minutiae, despite their utter remoteness from observation.

The third and final moral that I want to draw from the case of
string theory is more cautionary. I am hardly qualified to venture
anything like a judgment on the matter, but my impression, for what
it is worth, is that string theory is if anything rather unfriendly to
the hypothesis of infinitesimal distances. Many of its solutions to the
problems in existing theories (including its reconciliation of quantum
mechanics and general relativity) rest precisely on its rejection of

the conventional notion that we can always dissect nature on ever
smaller distances, without limit [ . . . ]. There is a limit, and it comes
into play before we encounter [ . . . ] quantum foam [ . . . ]. Therefore,
in a sense that will be made precise in later chapters, one can even say
that the supposed tempestuous sub-Planckian quantum undulations do
not exist. [ . . . ] Since the string is supposed to be the most elementary
object in the universe and since it is too large to be affected by the
violent sub-Planck-length undulations of the spatial fabric, these fluc-
tuations cannot be measured and hence, according to string theory, do
not actually arise. (Greene 1999, pp. 156–157)29

27 See Maddy 1997, pp. 135–143.
28 Greene devotes an entire chapter (1999, pp. 210–227) to this issue.
29 Cf. Feynman’s speculative diagnosis of the need for renormalization: “[P]erhaps
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If there is a non-zero lower limit on finitely small distances, then
so much the worse, it would seem, for infinitely small ones. Indeed,
if the smallest constituents of matter are extended, there may be
something to the Peircean rejection of points (if not to Peircean
infinitesimals). I belabor this third point in order to forestall a mis-
understanding that has often arisen in discussion. I am not arguing
that we do have abductive grounds for replacing real with hyperral
lines —only that we could, under the right circumstances. If string
theory ever ascends to the throne of “our best physical theory,” both
the real and the hyperreal lines may be demoted to the rank of
possibly harmless but useful falsifications of physical reality. If so,
so be it —my aim here has not been to create an air of inevitability
around the hyperreals, but to dispel the one around the reals.

As things now stand, string theory’s ascent is not a foregone
conclusion; and possession being nine-tenths of the law, there does
seem to be at least a presumption in favor of the completeness of
the physical line, of the real line over the hyperreal one. A finished
abduction would upgrade this presumption, not to certainty, but
to the more or less tentative confidence we place in any more or
less well-confirmed hypothesis; we can ask no more from abduction,
which rests on the shifting ground of scientific theory. To say only
this about the completeness of space —that it counts as a well-
confirmed hypothesis— would not be to damn it with faint praise.
For a Quinean empiricist this is the best we can ever hope for.
To be sure, our failure to ground completeness in intuition puts
it at some distance from the periphery of Quine’s web of belief;
but remoteness from sense need not weaken our confidence in a
hypothesis, as the examples of logical and mathematical hypotheses
make clear. Of course it is not the mere fact of remoteness that makes
those hypotheses relatively immune from revision: what matters more
is the violence with which revisions in logic or mathematics would
reverberate throughout the rest of the web. Our preliminary case
study —of the Law of Areas— does not make clear how violent the
aftershocks would be if we were to discard completeness; it leaves
open the possibility that they might be relatively mild. In that case
its remoteness from sense would leave completeness more, not less,
vulnerable to revision as science marches on. In any case if we take
completeness to be revisable at all, as I for one do, then we can no
longer go along with Russell’s sweeping dismissal of infinitesimals in

the idea that two points can be infinitely close together is wrong —the assumption
that we can use geometry down to the last notch is false” (Feynman 1988).
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analysis as “unnecessary, erroneous and self-contradictory” (Russell
1938, p. 345).30
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