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This paper questions the familiar doctrines that mathematical
terms stand for objects and that mathematical proofs are logi-
cal deductions. It suggests instead that grasp of a mathematical
concept typically requires mastery of an associated technique
or procedure, and that many proofs rely upon our reflecting on
how the relevant procedures would tum out. The proofs need
worlds like our own spatio-temporal-causal one, and would fail
at less obliging possible worlds: this implies that mathemati-
cal truths are not necessary since they do not hold throughout
logical space.

Introduction

The mathematical objects theory is the doctrine that mathe-
matics studies a special class of mathematical objects, just as
physics studies physical objects, and biology living objects. On
this view numbers and points literally exist and are just as real
as electrons and protozoa. Mathematical facts are facts about
mathematical things.

Deductivism is the doctrine that a mathematical proof is al-
ways a logical deduction. Deductivists recognize that in prac-
tice not all proofs are strictly valid, but demand that informal
proofs must be completable as proper deductions if they are to
count as proofs at aH. Logicism, the doctrine that every math-
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ematical fact is a logical truth, is one amongst several species
of deductivism.

Deductivism gives a special status to the axioms, which can-
not be proved. One pressure towards the matematical objects
theory is to suppose that the axioms are true because they re-
port the facts about mathematical objects. We might instead
try taking the axioms to be true by definition, but this is not a
helpful move. As Milll pointed out, we can define as we please,
but we cannot legislate for reality with our definitions to bring
it about that anything in fact satisfies them. To insist that the
axioms are true by defini tion is just to endorse "If- Thenism",
the view held for example by Ayer2 that mathematics contains
only the hypothetical truths that whatever satisfies the axioms
satisfies the theorems too.

If-Thenism is open to Quine's'' objection that there would
then be nothing distinctive about mathematical truth. Any the-
fjry whatever, about any subject maUer you please, can be ax-
iomatized in If-Thenist fashion. To distinguish mathematic
from other sciences, we need to say what it is for the terms in
the axioms to have a specifically mathematical interpretation.
On theories of meaning inspired by the notion of a model for a
formallanguage, the explanation can only be that their denoting

1 MilI [1967] Book 11, Chap VI.2.

The propoaition "A circle is a figure ... which has all its points equally distant
Croma poinl within it" is called the definition of the circle; but the proposition
from which so many consequences Collow . .. is, that figures answering lo this
description exisl.

2 Ayer [1967] chapo 4, p. 83.

AIl that the geomelry itself lells us is that if anything can be brought under
the definitions, it will also satisfy the theorems, It is therefore a purely logical
syslem ...

3 Quine [1975] p. 83.

The body oC all such statements . .. is of course a par! of logic; but the same is
true of any "theory of deduction oC sociology", "theory oC deduction oC Greek
mythology", etc., which we might construct in parallel Cashion with the aid of
any set of poslulales suited lo sociology or Greek mythology,
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expressions are to be treated as names of the right sort of ob-
jects. In rejecting If-Thenism we can thus be led to the thought
that there must be mathematical objects for the mathematical
terms to stand for or denote.

The notorious difficulty is to say what mathematical objects
can be. It would be absurd to say they are ordinary material
objects: the number two is not a material object, nor is the
point A a fragment of matter. It would be equally absurd to
say they are subjective mental entities: as Frege" remarked,
your number two would be different from everyone else's and
all mathematical truths would be relative to individual persons.

And so we are driven to Platonism, the doctrine that math-
ematical objects belong to a third realm, neither physical nor
subjective. We characterize abstract objects only negatively:
they are not in space or time, and they do not interact causally
with matter. How then do we know anything about them? Go-
del's'' answer was that we have intellective access to them,
trough mathematical intuition. But saying that the mind has
special access to abstract objects seems to commit us to sorne
species of dualism, since abstract objects could not interact
with a material mind. Even if we have no objection to dual-
ism as such, it remains obscure how the mind can contemplate
objects directly, without the mediation of the senses,

An altemative is to see mathematical objects as theoreti-
cal posits with somewhat the same status as electrons have in
physics. Since electrons and numbers are both needed in our
best overall theory of the world, it is rational to believe in what
our best theory needs. But the extent of the analogy between
electrons and numbers is doubtful. For what makes a theory a

4 Frege [1968] section 27.
5 GOdel [1944] p. 456.

It seems to me that the assumption of such objects ís quite as legitimare as the
assumption of physical bodies I'nd there is quite as much reason to belíeve in
their existen ce.
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best theory is that it gives the best explanation of the COUl"8e
of events. To explain an event is to fit it into the causal pattem
of the world. We need to posit electrons as the common cause of
a host of statistically correlated events that would otherwise be
unexplained. But if we are Platonists we do not think that num-
bers are the cause of anything. We can argue for electrons by
inference to the best explanation, but causal inertness blocks
the parallel argument for mathematical objects. The conception
of mathematical objects as theoretical posits is thus no help to
Platonismo

Perhaps we can have Platonism on the cheap, as in Crispin
Wright's6 understanding of Frege. Or perhaps we need only pre-
tend there are mathematical objects, as Hartry Field7 proposes
in his doctrine of "fictionalism". But prima facie at least there
is something to be said for exploring altematives to the doctrine
of mathematical objects.

Logic

We should also explore altematives to deductivism. One obvi-
ous line of attack is to rely on GOdel's Incompleteness theorem,
which shows that any theory adequate to express our mathe-
matical knowledge cannot be effectively axiomatized, so that
something must be ami ss with the picture of mathematical truth
as the logical consequences of axioms,

There is a general philosophical objection to deductivism
that does not rely on Godel. The chief advantage of deducti-
vism is its apparent ability to explain unproblematically our
epistemic access to sorne mathematical facts. But deductivism
is only satisfactory as an account of our knowledge of theorems
if Platonism is satisfactory as an account of our knowledge of
axioms. If we are skeptical of the value of Platonism's account

6 Wright [1983].
7 Field [1989], Introduction,
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of the axioms, then we must be equally skeptical of deduc-
tivism's account of the theorems.

For what is a deduction? We might try to define it in terms
of the logical consequence relation.8 Then someone makes a
deduction from P if they pass from P to one of its logical con-
sequences. We can say that Q is a consequence of P if every
model of Pis a model of Q. But a model is a mathematical ob-
ject, and so our knowledge of consequence relations seems to
depend on our knowledge of the existence of the relevant math-
ematical objects. Our difficulties about knowledge of mathe-
matical objects then carry over to corresponding doubts about
our knowledge of the consequence relation.

We might instead seek to characterize consequence by re-
lying on patterns of inference. But then the question arises
how we know that the favoured patterns of inference are truth
preserving. It will not do to appeal to the standard soundness
proofs, since they rely on models and bring us back to the pre-
vious difficulty. We could try the linguistic move of appealing
to the meanings of the logical connectives, and say for example
that anyone who grasps the meaning of"and" can see that P fol-
lows from P and Q. Then P logically implies Q if there is a se-
quence of steps starting from P that uses only such self-evident
logical inferences and concludes to Q. But such an account is
open to a fundamental objection of Wittgenstein's.9

A proof usually contains not one but many steps. If we define
logical consequence in terms of a sequence of syntactically au-
thorized transitions, we need to say how many transitions are
allowed. lf we make no restriction there will be sequences too
long to be written down. If Q is the conclusion from premiss P
of a sequence with an excessive number of steps, we encouter a
dilemma when we enquire whether Q is a logical consequence
of P. Suppose we say it is. Then the existence of a sequence is

8 Tarski [1956] is an explicit statement of this account.
9 Wittgenstein [1967], Part 11,1--44.

161



not the existence of any physical inscription of the sequence.
So the sequence is not a material object, but sorne other kind
of thing: in fact, it is just a mathematical object of the familiar
sort, If we know of its existence it must be in the same way
that we know of the existence of other mathematical objects. So
once again deductivism would tum out to rely on mathematical
objects for our access to mathematical fact.

The altemative is to say that the consequence relation holds
only if there is an actual inscription of the sequence. But what
we want logical consequence to capture is the impossibility of
the premiss being true yet the conclusion false, and this surely
cannot depend on whether there is an actual inscription-of a se-
quence. Admittedly, sorne of the intuitionists have indeed held
doctrines of this sort about proofs, arguing that mathematical
facts are tensed.l? But it is difficult to see how the coming into
existence of a proof can make it impossible for the conclusion
to be false, if that was not impossible before.

Deductivism sees aH proof as the tracing of logical conse-
quence, and therein lies its mistake. The consequence rela-
tion belongs with the objective mathematical facts we seek to
discover, whereas proof is an essential epistemic concepto If
something does not lead us to knowledge then it simply can-
not be proof. As Wittgenstein puts the point, a long "proof" is
unsurveyable, and therefore not a proof at all. u

CaH a sequence oflogical inferences a canonical chain. Then
Q is a logical consequence of P if a canonical chain connects
P and Q. Then it is possible to prove "If P then Q" by showing
that there exists an appropriate canonical chain. The proof of
existence can be short, for it need not exhibit the chain. Thus
it is the short proof not the chain that is the real proof of "If P
then Q", because that is what gives us epistemic access to the
mathematical facts. The short proof will in general not itself be

10 For a diecuseion, see Dummett [1973],6.1.
11 Wittgenstein [1967], e.g. Part 11,2.
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a canonical chain, so we conclude that there must be additional
methods of proof beyond deduction in the strict sense.

Diagrams and intuuions

That deduction is not the only technique of proof is a contention
familiar from intuitionism. And indeed it does seem plausible
to look to intuition if we seek something other than logic to drive
proof. The doctrine that intuition is the source of our mathe-
matical knowledge derives from Kant. He says that to prove
that 7 + 5 = 12 we must give ourselves in intuition a case
of 7 + 5, which we then see is 12.12 Similarly in geometry we
need to give ourselves a figure which we examine to confirm the
required properties.P Let us call the intuited object or objects
the diagram. We can represent Kant as saying that we give
ourselves a diagram in intuition, and that from an examination
of it we see that things are as the theorem says.

What Kant says about geometry is sometimes disparaged be-
cause of the discovery of non-Euclidean geometry. But that af-
fects only the axioms: what he says about geometrical proofs
in Euclid's style surely remains correcto Visual inspection of
a drawn or imagined diagram, intuition in Kant's terminology,
is indeed needed in order to understand Euclid's proofs. Con-
sider, for instance, the result that the angle in a semi-circle is
a right angle, The proof begins with the diagram:

B

AIC-__ ~ -JlJC

12 Kant [1933], 815.
13 uu.. 865.
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To understand the proof, it is necessary literally to see that
the large triangle ABC is composed of the two smaller trian-
gles, and that the angle ABC is made up of the two small-
er angles. Thus the account that Kant gives has important
strengths, for he has noticed a feature of classic mathematical
reasoning that is overlooked by deductivisrn. But there are two
problems for Kant, which arise also for the modern intuitionists
who are his intellectual heirs.

The first problem is that if we have knowJedge by inspection
of the diagram in intuition, how are we supposed to tell that
the inspection has been carried out correctly? Whence arises
the required apodeictic certainty? Frege'" made fun oí Kant by
asking how we are supposed to know that 135664 + 37863 =
173527 by inspection of the a priori intuition, but the same
question arises even in the case of 7 +5 := 12. The geometrical
case is even more telling against Kant. Thc diagram may look
as if it conforms to the theorem, but how are we to rule out
the kind of very slight discrepancy that ShOW8 up not on visual
inspection but only by measurement? Thus Kant cannot tell us
how we can be certain of what we seem to see in the diagram.

The second problem is that the diagram is just one case. How
can we generalize from it to other cases? How can 1 tell that
because this collection of 7+5 is 12, that every other collection
of 7 + 5 is 12 too? If this particular triangle in the diagram
verifies sorne geometrical proposition, will every other triangle
do so too? Kant relies on the Transcendental Aesthetic, but that
is unlikely to satisfy the non-Kantiano If we are to make further
progress, we need an alternative to the mathematical objects
theory.

14 Frege [1968], section 5.
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Procedures

Wittgenstein sketch es a different theory at the start of the Inoes-
tigations.15 There he was concemed to attack "the Augustinian
conception" of language, according to which words function
essentially as names, A name gets meaning by standing for an
object, so that understanding the name is just a matter of know-
ing which object it is that the name stands for , Against this,
Wittgenstein considers someone going into a shop and asking
for five red apples, To call "red" here the name oí a colour is,
he says, to obscure an important eomplexity in the word's use.
The shopkeeper perhaps produces a colour chart and compares
the apples with the sample markcd "red": they are red if thcy
match. According to Wittgenstein we might say the sampJe is
part of the language, but neither it nor anything else is the des-
ignation oí the name "red".

It is the same, he says, with the word "five". Again we have
to take into account the full complexity of the linguistic prac-
tice. Before one can use number words, one has to memorize
the numerals in the eorreet order. To give five apples, one has
to master the technique of counting out. So to understand the
meaning of "five apples", one needs to be master of the appro-
priate procedure, rather than needing to know of the mathemat-
ical object 5.

This doctrine oí Wittgenstein's can be applied to sorne other
branches of mathematics. Just as arithmetic requires the proce-
dure of counting, geomctry too has its procedures, the construc-
tions. To understand what is meant by saying that something
occupies a certain point, one might suppose that what is needed
is to know which object the point is. But on the procedure ac-
count, there is no such object to know of, but only procedures
of measuring. It is in the context of mastery of such proee-
dures that one understands what it means to talk of geometrical
loeations.

15 Wittgenstein [1958] 1.1.
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Diagrams and eertainty

The observation that arithmetic and geometry both depend on
procedures suggests how to repair the Kantian account of proof.
The first problem was how we can be certain of what we see in
say, the diagram for a proof, that 7 + 5 = 12. On the procedure
theory, we resolve the difficulty by simply inverting the argu-
mento Being 12 just is being disposed to give the result "12"
when counted by a suitably placed and competent persono The
outcome of the person's application of the procedure is consti-
tutive of what it is to have the mathematical property of being
a collection of 12. In the same way, being 7 + 5 just is to be
disposed to be counted as a 7 and a 5 by a suitably trained
person who is in a favourable position to count.

Here we might press the analogy with the colour word "red".
What it is to be red is to be disposed to appear red to a suit-
ably placed observer, and the judgments of such observers are
constitutive of what it is to have the property of redness. Pred-
icates like "red" and "12" are markedly different from predi-
cates which stand for what we might call intrinsic properties of
things, the structural properties that give rise to dispositions
like redness. Whether a thing has an intrinsic property de-
pends on how it is with the thing as it is in itself, and cannot be
definitely settled by simple visual inspection. Thus gold looks
golden, but a golden appearance can be caused by properties
other than being gold: being fool's gold is just as efficacious
in this respecto So visual inspection under favourable circum-
stances is not usually sufficient to settle whether a metal is gold,
since that is an intrinsic property, But visual inspection does
settle the question of whether something is red. If something
appears red in the right circumstances, that is constitutive of
its being red.

There is then no sense to the suggestion that something might
really be another colour even though it looks red under opti-
mum viewing conditions. We can say the same about mathemat-
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ical predicates where there is a procedure that decides whether
the predicate applies. It is not an intrinsic property of the ob-
jects that they are 12, though it is their intrinsic properties
that dispose them to count as 12. It is constitutive of being 12
that they count as 12, and there can be no question of their per-
haps not being 12 if that is the count under optimum counting
conditions. This point is overlooked both in Platonism and by
Kant. Platonism with its doctrine of independent mathemati-
cal objects naturally takes numerical facts to be about intrinsic
properties of the numbers, quite independently of any human
counting activities. Kant too seems to take numerical proper-
ties of things to be intrinsic properties, so that the question will
arise whether our intuition of these properties is reliable. And
the answer to that must be, as Frege's mockery shows, that our
intuition is completly unreliable. Intuitionism cannot explain
the certainty of mathematical knowledge.

The procedure theory in contrast is well placed to explain
the certainty. It says we are right to be certain of what we see in
the diagram, because the diagram is just the sort of example
that would be used in teaching someone to count. The possibil-
ity of certainty in cases like this is an essential precondition of
the meaningfulness of the mathematical terms used in the theo-
rem, for if there is to be a procedure of counting, it must be pos-
sible for us sometimes to know that we have counted correctly.
If we doubt that that there are 12 things in this case, then we
are doubting that we can give the sign "12" its usual meaning,
and so the doubt is to that extent self-defeating. Thus the pro-
cedure account is not open to Frege's objection. It can concede
a distinction between the cases of small and large numbers,
and indeed can agree with Frege that proof of the correct way
to add large numbers is not available along the lines of Kant's
diagram. Very large numbers are not the paradigms we use in
teaching counting. The procedure theory would say the proofs
are quite different if the numbers are large, and that they rely
on our grasp of further procedures such as the technique of
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counting in the decimal system. But that would not detract in
the least from the status of the 7 + 5 = 12 diagram as a proof.

Generalizing from the diagram

The second problem for a Kantian account is how we are to
generalize what the one diagram shows us to other cases. One
way to pass from the particular to the general is induction as in
science, but that seems inappropriate for mathematical proof.
Another way is to reason with an arbitrary object. We reason
about the diagram, says Berkeley.l" not noticing its particular
features but only those relevant to the proof. Then any other
diagram agreeing with the first in all relevant features will fall
under the theorem too, even if it does not share other features
irrelevant to the reasoning. But this account, while it works
well enough in the context of Berkeley's own theory, is surely
not available to Kant, since by "reasoning" Berkeley can mean
only deduction. If we do not rely on deduction, but appeal also
to intuition of the properties of the diagram before us, then we
cannot claim to treat it as an arbitrary object.

So if we wish to accept the role of diagrams in proofs, we need
sorne third way to derive generality from a single instance, a
way neither inductive nor deductive. There is such a way: the
use of a particular diagram to represent a general method of
solution of a practical problem. For example, if 1 am puzzling
how to fit these parts together to make that shape, you can give
me a diagram that shows me how to do it. The diagram is a
concrete particular, but 1 use it to grasp a general mcthod for
putting together parts like this to form a shape like that. We get
the result Berkeley aimed at. The diagram shows the method
whether its parts are black or white, ink or chalk, large or small.

16 Berkeley [1710] Introduction XII.

He draws, Corinslance, a black line oC an inch in length: this, which in itself
is a particular line, is nevertheless with regard lo its signification general. .. :
so that what is demonstrated of it, is demonstrated oC alllines ...
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The details of the diagram are unimportant, because we are
concerned not with the diagram as object, but with the general
method we grasp from it.

Let us return to Kant's proof of 7 + 5 = 12. We are shown a
particular case that is an instance of the theorem. The sight of
the particular case, the diagram, is supposed to lead to knowl-
edge that the theorem holds generally, We can perhaps improve
on Kant's account if we say the generality arises because the
diagram shows a general method oC exhibiting a group of 7 + 5
objects as a group of 12 objects. The method shown here is not
very interesting, so we should perhaps think of this as a de-
generate case. The account is more plausible when the method
displayed involves a modicum of ingenuity, as in the case of the
proof of the angle in the semicircle. The diagram shows how to
decompose the angle, by showing us a particular case in which
it has been done.

On the procedure theory, the picture of how mathematical
proof often works would be as follows. Say we are trying to
prove that all A are B. Associated with the predicare A will be a
procedure or procedures which determine whether A applies in
a particular case. Similarly there will be procedures associa-
ted with B. What the proof does is to exhibir a particular dia-
gram with two purposes to serve. First, it either is or represents
something which is both an A and a B, since we are able lo see
on inspection the outcomes of the relevant procedures. Sec-
ondly, we see from the diagram a general method by which to
exhibit any A as a B -for example, we see how to exhibit any
angle in a semicircle as containing two isosceles triangles. De-
duction and logical reasoning will have a role to play in reach-
ing the final conclusion, but the diagram is needed too.

On this account it is absolutely characteristic of mathemat-
ical proofs that they exhibit methods. Our epistemic access lo
mathematical fact is best compared not with intuitions oC oh-
jects, but with the acquisition of a practical skill.
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The problem 01generality

That rigorous proofs should make essential use of practical
methods is obviously incompatible with deductivism. Neither
can it be reconciled with the mathematical objects theory. Take
a proof that shows that a certain kind of shape can be decom-
posed into four equal parts. What the proof shows is a method
that aetuaHy accomplishes the decomposition, a method that
would work quite weHin practice on any suitable material ofthe
right shape, A Platonist will wonder what this practical tech-
nique can have to do with facts of pure mathematics. Shapes are
abstract objects, the Platonist says, and facts about our sublu-
nary cuttings and pastings cannot reveal the properties of the
abstract objects. But this conflict between the procedure theory
and Platonism need not dismay the procedure theorist. On the
contrary: the question of how mathematical facts find useful
application is a notorious difficulty for the Platonist, whereas
the problem does not even arise for the procedure theory. What
is more, the procedure theory can account easily for the gen-
erality of the conclusion, whereas generality presents a fresh
difficulty for the Platonist.

In discussing propositions containing a generality opera-
tor such as "aH" or "every", it is helpful to make a dis-
tinction between a referential use where particular objects
enter into the truth conditions, and an irreferential use, where
this is not the case. For example, in "AH Jack's sisters are
blande" we economicaHy state a proposition equivalent to
the conjunction of propositions saying of each that she has
blonde hair. In contrast, "AH swans are white" is presum-
ably an irreferential use: here it is not conjunction that
we want but quantifiers, which foHowing Frege17 and D.M.

17 Frege [1891] p. 38.

Such a function (se quantification) is obviously a fundamentally different one
... for ... only a function can occur 88 its argumento •. functions whose argu-
menta are and musl be functions. .. 1 cal!. .. second-level.
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Annstrong18 I take to indicate second-level properties of prop-
erties. The intention here is not nonnally to state economically
a conjunction about individual objects but rather to connect the
properties of being a swan and whiteness. In this case the con-
nexion would presumably be thought of as a nomic one. Simi-
lady "All unmarried men are men" is unlikely to be a referential
use. The speaker means not to talk about the individual men
but to state a connexion between being an unmarried man and
being aman. This time the connexion would be a logical one.

The Platonist way to read a mathematical theorem is as tell-
ing us the relations in which the mathematical objects stand.
We have already rehearsed the difficulties that beset Platonism
in saying how we can have knowledge of individual abstract
objects. Because it reads general statements in mathematics as
referential uses about objects, Platonism faces a fresh puzzle
about how we can know general theorems.

If the variables of quantification range over totalities which
cannot be inspected in a finite time, there are two ways a finite
creature can find out general facts. It can discover that a gen-
eral proposition is false by recognizing a counterexample, and
it can discover it is true by recognizing a finite proof. But if a
proposition is known by recognizing a proof of it, the question
in tum arises of how the premisses of the proof are known. It
seems not to help the Platonist to say that the knowledge of
the theorems rests ultimately on knowledge of the axioms, for if
theyare themselves general propositions it would appear their
truth value cannot be known in either of the two ways a finite
creature can know such things. If an axiom is true we shall not
find its truth value by recognizing a counterexample, and if it is
independent of the other axioms we shall not be able to prove
it by a finite proof taking them as premisses. So it is hard to

18 Armstrong [1983]. Chapter 6 expounds his doctrine of laws of nature
as "relations between uni versal s" .
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see how the axioms can be known, and if the axioms cannot be
known the theorems cannot be known either.

Perhaps we could here make a move like Godel's19 and argue
that we are justified in believing the axioms not because they
are self evident or something of that sort, but because they lead
to fruitful consequences in the finitary domain, This has sorne
plausibility if we are considering how a highly infinitistic the-
ory like set theory might systematize modestly infinitistic
theories like arithmetic. But it is unclear in what sense the
finitary facts of computation stand in need of systematization
or explanation. Moreover, as the fini tary facts are all decidable
the infinitistic theory yields no new finitary theorems. It is quite
obscure how facts about the results of particular finite compu-
tations would justify believing general propositions. Consider
the proposition that every number has a successor , so that there
is no last number , We encounter quite large numbers, so we
suppose that the number of numbers must be quite large too
-but why must it be infinite, when the supposition that it was
large but finite would fit the finitary facts just as weH?

The altemative to the Platonist account is to read the gen-
eral statement as irreferential, so that the objects drop out of its
truth conditions. This removes the puzzle about how we can be
acquainted with the whole of the infinite extension. Of course,
it remains to give an account without appealing to extensions of
what it is for there to be a connexion between properties. In the
case of nomic connexion of properties, we can say that we are
dealing with Iaws, to which we gain epistemic access by normal
scientific inductive practico; in the case of logical connexion
we gain access by deduction. Finally, in the mathematical case,

19 GOOel [1947] p. 4 77.~

There mighr exist axioms so abundant in their verifiable consequences, shed-
ding so much light upon a whole field, and yielding such powerful methods
for solving problems ... that, no matter whether or not they are intrinsically
necessary, they would have to be accepted al least in the same sense as any
well-established physical theory.
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the procedure theory says that general propositions are made
true by facts aboul procedures. Thus Goldbach's conjecture
is true, if it is, because the procedure of searching for an even
number nol the sum of lwo primes will never termínate. If a
computer is programmed lo carry out the search, then given
that the machine has a deterministic conslruction, it is deter-
minate whether it would hall, though this is not something that
we can necessarily discover just by specifying the construc-
tion. The procedure theory avoids the intuitionist objection to
the delerminacy of truth value of undecided propositions by
grounding them in Iacts about how the computer is going lo
behave. These facts are determinale because of the laws gov-
erning the construction of the machine, and the appeal lo laws
replaces the Platonist appeal to an actual infinite totality, Thus
the procedure theory would suslain the law of the excluded mid-
dle, conlrary lo intuitionism. Of course it remains true on the
procedure theory that we do not always know what outcome. is
in fact determined by the laws, so that the procedure theory is
not immune to general anti-realist objections of the sort raised
by Michael Dummeu.é" Bul it is distinguished amongst realist
theories by its parsimony. 11" replaces the infinite totalities of
Platonism with the laws of nature as the objective ground for
the determinateness of truth value oí infinitary propositions.

Methods and facts

On the procedure theory, the proof shows a method such that
given an A, I can exhibit it as a B. So the mathematical connex-
ion between the properties A and B is shown by a method for
exhibiting each A as a B. I follow the proof and grasp from it a
method oí performing a certain task. Perhaps I form a mental
picture of myself carrying out the task in the manner the proof
indicates. This is my epistemic access to the method, and hence
to the mathernatical facts.

20 Dummett [1973]. See Introductory Remarks.
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I may believe in the existence of a method but be mistaken.
When I put my supposed ability to the test I need the coopera-
tion of reality if I am to get the results I want. This shows that
to assert the existence of procedures and methods is to make
factual claims about the world. The procedures are needed to
give the mathematical terms a meaning at aH; the methods are
needed to exhibit the connexions of properties asserted in the
theorems. In both cases we need cooperation from the world if
mathematics is to succeed.

We need to consider whether mathematics can be done in a
possible world, if the needed procedures cannot be carried out
there. A preliminary point is that even if the procedure can-
not be performed at a world, it can still be referred to there.
The ability to count, ifl have it, indeed depends on the world's
cooperation, but I can still speak of counting even at an inhos-
pitable world where counting is impracticable for me. AH that
is needed is that I should be able to fix the reference of the
word "counting" by demonstrating the technique at a suitable
tractable world -the actual world, for example.

The existence of a procedure is a precondition of mathemat-
ics at a world, but a procedure can exist in this sense even if
it cannot reliably be put into effect. It may be that at a par-
ticular world, I cannot perform the procedure for unimportant
reasons. For example, objects may move too fast for me ever to
count them, given my powers at that world. That presents prac-
tical difficulties for arithmetic there. Or a world may happen to
contain only liquids, so that there is no straight edge available
for geometrical constructions. This loo RusseH21 to speculate
about what progress the liquid geometers would make. But such
practical snags do not prevent mathematical description of the
state of affairs, provided we can say what the result of the proce-
dure would have been had it not been for the difficulties. Thus
mathematicians say their subject involves "ideal" operations:

21 RU88ell [1956] section 72.
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they like to talk of lines with length and no breadth, of inexten-
sible strings, and ofTuring machines with infinitely long tapes.
Surely mathematicians are not serious about impossible objects
like these? The explanation is that in practice procedures are
disrupted by the finite breadth or extensibility or length oí the
tape, but that we can see clearly enough how things would have
gone on if the procedures had not been disrupted. H the laws of
nature are such as to make definite what would have happened
without the disruptions, it is legitimate to talk of infinite tapes
and the resto Mathematical idealization is not the breathless
positing oí abstract ideal entities, but mundane recognition of
counterfactual definiteness under the laws.

If we travel far in logical space from the actual world, we
reach unfriendly worlds where substance is not conserved and
causality fails. According to the procedure theory, mathemati-
cal description of such worlds is pointless, for we cannot per-
forro the procedures and we cannot say either what the result
oí a procedure would have been if we could have carried it out.
Consider a world where things sometimes appear or disappear
of themselves without any law. Then the empirical results oí
counting would be quite unpredictable, and we could not say
that given objects were disposed to elicit any particular nu-
meral when counted. There would be nothing to support coun-
terfactuals about what the result of a count should have been,
and so the notion oí correct counting would be empty. Thus
counting depends on the world having an appropriate causal
structure.

The same applies to geometry. In a causally anomalous world
a Euclidean construction cannot be carried out with any con-
fidence. H we add construction lines to a figure, we in the ac-
tual world believe that the rest of the figure will be unchanged
unless some causal agent intervenes. So at the actual world,
the íollowing is true: if shapes or sises are alsered after a con-
struction, then a causal explanasion can be¡ound. Again, in
Russell's liquid world no constructions can be performed in
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practice. But geometry can still apply if the following is true: if
it had been possible to carry out constructions, then there would
have been a causal explanation 01 any alteration 01 shapes or
sizes afier a construction. But when causality fails the counter-
factuals lapse, and the geometrical concepts too beco me empty.

Thus the procedures on which the mathematical terms de-
pend for their sense may not exist at sorne possible worlds,
which accordingly cannot be described in mathematical terms.
Similarly the methods appealed to in a proof may not exist at a
world. The statement that a method exists again entails counter-
factual s about what would happen if 1made no mistake and was
not impeded. Thus the existence of a method at a possible world
implies that the world occupies that subspace of logical space
where the appropriate counterfactuals are true. Since there are
possible worlds where the counterfactuals are false, it follows
that mathematical theorerns based on the existence of a method
are false at sorne worlds, and hence are not logical truths.

The mathematically possible worlds are those where the
propositions of mathematics are true. These worlds will all be
such as to allow us to be confident of the effectiveness of
the methods to which we appeal in our proofs. At other worlds,
the propositions of mathematics are false, though not necessar-
ily in the sense that sorne mathematical contrary ofthem is true.
Thus there are worlds where it is not true that 2 + 2 = 4, but it
need not follow that at sorne world 2 +2 has sorne other definite
value. 2 + 2 = 4 will be false at a world at which the coun-
terfactuals it supports are false, but it by no means follows that
the counterfactuals supported by sorne mathematical contrary
of it are true at that world. Thus the mathematical negation of
a theorem, being itself a mathematical proposition, is true only
under the assumption of counterfactual definiteness. The math-
ematical negation is therefore an intemal negation and not the
same as the negation of c1assical logic, and to that extent the
intuitionist suspicion of the law of excluded middle is justified,

176



though this is not grounds to suppose that classicallogic itself
needs revision.

Is maihematics a priori?

On the one hand the procedure theory says that the truths of
mathematics are objective because laws of nature make it de-
terminate what the outcome of a procedure should be. On the
other hand, it stresses the role of proof in knowing mathemati-
cal theorems, suggesting that mathematical truth is discovered
a priori. It might seem that these two claims are inconsistent,
if we suppose that in order to know something 1 have to know
the features of reality that make it true. For if the procedure
theory says that theorems are made true by laws, it would seem
to follow that finding out that the theorems are true involves
finding out the laws, so that mathematical practice ought to be
inductive. But the phrase "make it true" is equivocal. If we use
it within a linguistic practice, then what makes a true statement
true is just the fact that it states, If we use it in semantic the-
ory, then we mean what makes the linguistic practice we are
describing one that can correctly be described as the stating of
objective fact.

A semantic theory may be homophonic, in the sense that it
explains a linguistic practice by using the very concepts that
figure in the practice and which it seeks to explain. If it is non-
homophonic, then it uses concepts different from those used in
the practice being explained. Platonism is a homophonic the-
ory, for when it describes the relation between mathematical
language and the world, it describes the world using matemat-
icallanguage. Thus according to Platonism, what makes state-
ments about the number 6 objectively true or false are just the
mathematical properties the number6 objectively has. The pro-
cedure theory, on the other hand, is a nonhomophonic theory.
When it describes the relation between mathematicallanguage
and the world, it uses a non-mathematical vocabulary and ap-
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peals instead to laws of nature. According to the procedure the-
ory, what makes statements about the number 6 objectively true
are the laws that underpin counterfactuals about the results of
correct computation.

Because the procedure theory is a theory about the seman-
tics of mathematics, it can say from outside that the practice
depends 00 naturallaw without having to deny that knowledge
within the practice is a priori. There is no contradiction in as-
serting both that a priori knowledge exists and that it is the
laws of nature that make it possible. It remains to explain why
a priori knowledge might depend on the laws of nature.

Counting involves going to an object and saying "one", go-
ing to the next and saying "two", never going to the same object
twice, and stopping only when one has gone round all the ob-
jects. If I can identify all the objects the count will advance
by exactly one for each and so will be determinate if I make
no mistake. Hence provided I can correctly identify them, the
objects are disposed to elicit from me a definite numeral. If I
cannot identify them, still they would elicit the same numeral
if I could identify them. Thus the number of a collection is
determinate if each object is identifiable at least in principIe.
This establishes a priori that a count of identifiable objects is
determinate. In the same way the proof of a proposition like
7 + 5 = 12 establishes it a priori, since here too we appeal
only to the possibility of correct identification.

OC course the argument would fail if the laws were not such
as to aHow events to be analyzed as the doings of identifiable
continuants falling under sortals. That is why a priori knowl-
edge can depend on laws. But if we had a prori reasons to think
that any intelligible world must contain some suitable continu-
ants, and therefore must have appropriate laws, then we would
have an explanation consistent with the procedure theory of the
a priori nature of mathematics. Kant and Strawson22 have given

22 Strawson [1959] chapter 1.
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us such reasons, so that it seems plausible to think that the class
oí mathematicalIy possible worlds coincides with the class oí
worlds that are intelligible. On this view, mathematical truths
are not necessary since it is surely contingent that the world is
intelligible. It is a consolation, however, that we can saya priori
that any intelligible world is truly described by mathematics.
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RESUMEN

Este artículo cuestiona las doctrinas usuales de que los términos
matemáticos se refieren a objetos y de que las demostraciones
matemáticas son deducciones lógicas. En su lugar, proponemos que
captar un concepto matemático requiere típicamente dominar una
técnica o un procedimiento asociado, y que diferentes demostra-
ciones cuentan con que nosotros reflexionemos acerca de qué resul-
tados tendrán los procedimientos pertinentes. Las demostraciones
requieren mundos espacio-temporal-causales como el nuestro y fra-
casarían en mundos menos complacientes; esto implica que las ver-
dades matemáticas no son necesarias ya que no se sostienen a través
de todo el espacio lógico.

[Traducción de Ricardo Salles]
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