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Is it possible to say, in a clear and precise way, just what con-
stitutes the distinction between logical expressions (formatives,
syncategoremata, particles, constants) and nonlogical expres-
sions (material expressions, categoremata, terms, variables)?
Pessimism conceming this seems to be the ruleamong most
contemporary logicians. For example, Tarski: "no objective
grounds are known to me which permit us to draw a sharp
boundary between [logical and extralogical] terms" ([30],
pp. 41~19); Mates: "unfortunately the question as to which
words should be considered logical and which not involves a
certain amount of arbitrariness" ([18], p. 14); Quine: "Each
such word is in a class fairly nearly by itself; few words are in-
terchangeable with it salva eongruitate. Instead oflisting a con-
struction applicable to such a word and to few if any others, we
simply count the word an integral part ofthe construction itself.
Such is the status of particles" ([20], p. 29); Allwood, Anderson
and Dahl: "In the last instance it is a matter of decision whether
a word belongs to the logical vocabulary or not" ([1], p. 24).

In the face of today's overwhelming pessimism we must re-
mind ourselves that there have been earlier times of optimismo
For example, Leibniz: "So just as there are two primary signs of
algebra and analytics, + and -, in the same way there are, as
it were, two copulas 'is' and 'is not'" ([16], p. 3); OeMorgan:
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"1 think it is reasonably probable that the advance of symbol-
ic logic willlead to a calculus of opposite relations, for mere
inference, as general as that of + and - in algebra" ([2],
p. 26); Sommers: "aH formatives-including propositional
'constants'-are analogous to plus and minus signs of arith-
metic"([25], p. 249).

If these optimists are correct, then not only it is possible to
draw a clear and precise distinction between the logical and
the extralogical expressions of a language, it is also possible
to give a very simple characterization of the nature of logi-
cal expressions-they are aH signs of opposition, analogous
to the oppositional signs of mathematics. Such prospects are
surely attractive. If so, however, why have most contemporary
logicians tumed pessimistic? The answer, 1 think, lies in the
shift from a traditional account of logical syntax to a Fregean
account, rather than dweH on the story of that shift. We want
to look closely at the consequences of the traditionalists' opti-
mism with regard to the logical/extralogical distinction and the
nature of logical expressions. Any substantiation of the attrac-
tive prospects offered by the traditionalist view must inevitably
cast sorne doubt on the Fregean view and its concomitant pes-
simism.

1. Let us begin by looking at the signs of opposition used in
mathematics-the plus and minus signs. Such signs are sys-
ternatically ambiguous. Consider the express ion

(1) -(2 + 3)

Here the minus sign is a unary formative. The expression in
parentheses represents a number and the minus sign represents
its negation. Thus it is equivalent to '-5', an explicitly nega-
tive number. But we could distribute the minus sign into the
parenthetical expression. Thus:

(2) -2 -3
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In this case the first minus is clearly a unary fonnative. But
what ofthe second one? We could be adding two negative num-
bers, Le.

(3) (-2) + (-3)

or we could be subtracting positive 3 from negative 2, Le.

(4) (-2) - (+3)

in which case the second minus sign is not a unary formative
but binary. It marks the operation of subtraction on an ordered
pair of numbers. Indeed, this ambiguity between a unary and
binary use characterizes the plus sign as well. The parenthet-
ical expression in (1)must be viewed as the addition (a binary
operation) of two positive (a unary operation) numbers, Le.

(1.1) -(( +2) + (+3))

Mathematicians tend to omit plus signs whenever convenient
(taking unmarked expressions to be implicitly positive). So the
plus on 2 is omitted. But which of the next two pluses is omit-
ted? The first of these is the binary fonnative marking addition.
The second is the unary fonnative used to make 3 positive. One
is omitted-and it is clearly the unary plus. Indeed, the con-
vention here is quite unifonn and universal: unary plus signs
may be suppressed; binary signs, plus or minus, are never sup-
pressed. That is why (4) is nonnally written as (2).

Notice that it is possible to do arithmetic, say, using only a
negative unary fonnative and a positive binary one. In so do-
ing one simply adds; subtraction is replaced by the addition
of negative numbers. In such a system of arithmetic we could
only introduce a binary negation (subtraction) by defining it in
terms of numerical negation and addition (our "basic" unary
and binary fonnatives respectively). We might think of a sys-
tem using only such primitive expressions as itself basic; one
which admits defined expressions (e.g. binary negation in our
example) would be an amplified system.
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2. The systematic ambiguity of plus and minus expressions in
mathematicallanguage is not only benign, it is a source of great
expressive power for the mathematician. Leibniz, DeMorgan
and Sommers have suggested that naturallanguage has a log-
ic which, like mathematics, makes use of two kinds of basic
expressions, the signs of opposition. In fact, their common po-
sition seems to be that all the expressions of naturallanguage
which carry the responsibility for determining logical form (viz.
constants) are either positive signs or negative signs or signs
definable in terms of these.

Now if this is so it means, among other things, that one could
build an artificial formallanguage which would model natural
language by using the mathematician's opposition signs for aH
formatives. The result would be an algorithm for natural lan-
guage which would model natural statements as arithmetical
formulae and inference as arithmetical calculation. There is
little doubt that this was Leibniz's goal throughout his logical
studies. And Sommers has come very close to reaching that goal
in his own logical work (see [25]-[28]). It would seem, there-
fore, that the idea of using signs of opposition to model natural
language formatives is a good one, leading, as it seems to have
done, to rich programs of logical investigation and to viable
systems for logical reckoning.

One of the con sequen ces of this idea has been, as we saw
earlier, great optimism among those who have shared this idea
that a clear and precise account of the nature of logical for-
matives, and their distinction from nonlogical expressions, can
be provided. In a sense, their account 'is quite simple: logical
formatives, unlike other expressions, are oppositional in just
the way that plus and minus are oppositional in mathematics.
But to fully appreciate this kind of account we need to look
more closely at the oppositional character of formatives, their
role in inferences, and the kind of algorithm which could mod-
el those inferences. Of course, the best way to achieve a full
understanding of such an idea and all of its consequences for
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logic would be a close inspection of Sommers' completion of
the Leibnizian programo

3. Let us imagine a basic language. Its lexicon, or vocabulary,
consists of terms (we will say that aH these terms are English
words and phrases). A sentence in the basic language is formed
by using terms and formatives. There are two formatives. One
formative simply applies to a term and resu1ts in another termo
It is 'non'. Applying 'non' to a term resu1ts in a new term which
is the negative of the original termo Note that 'non', the nega-
tion expression, is a unary formative; it applies to terms one at
a time. The second, and only other, formative applies to terms
two at a time; it is binary. The binary formative is 'and'. Apply-
ing 'and' to a pair of terms resu1ts in a phrase. Every phrase is
also a term (thus every term is either a simple term or a phrase).
The 'and' has an important formal feature which will be exploit-
ed throughout the language-it is symmetric.

Before continuing it is important to point out that the basic
language is not English, or even a fragment of English (though
ideally it will share with English just those logical character-
istics in which we are interested). This means that 'non' and
'and' are not the English words 'non' and 'and'. Were we to
attempt to translate from English into the basic language we
would translate many expressions as 'non' and a great many as
'and'. Here are sorne important examples.

Non

not
it is not the case that
un
dis
less
it is false that
non

And

both ... and
belongs to sorne
is true of sorne
is true of at least one
is true of a
belongs to a
belongs to at least one
IS

are
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Non And
were
is the same as
is identical to
but
and

English expressions on such a list are not necessarily synony-
mous. But they do all share the same formal features. In the
case of 'and' for example all the English expressions are, like
'and', symmetric binary formatives.

Among the phrases formed by use of the binary formative are
sentences. Whether a phrase is a sentence or not depends upon
how the formative is interpreted. So it is a matter of semantics
and pragmatics rather than syntax. In a natural language like
English we distinguish between those binary formatives which
result in sentences and those which result in nonsentential
phrases. For example, 'is' forms sentences from pairs of terms
('Man is mortal'), while 'and'-the English 'and' now-forms
nonsentential phrases from simple terms or other nonsenten-
tial phrases ('man and beast', 'man and mortal but happy') and
sentences from sentences ('Man is mortal and art is immortal').
We will often call nonsentential phrases compound terms. Nev-
ertheless, from our purely formal point of view, aH such bina-
ry formatives are translatable into the basic language as 'and',
since all share the same formal features.

Our basic language is quite simple in that its grammar is
exceedingly spare. Any term can be negated. Any pair of terms
can be connected by 'and' to form a phrase. Any phrase is itself
a term (thus it can be negated and it can be connected by 'and'
to any other term). This syntactical simplicity-along with our
choice of 'non' and 'and' as our only formative expressions sug-
gests a simple algebraic algorithm for modelling expressions in
our basic language. Let us symbolize (model) each simple term
by an uppercase letter. Let us also symbolize 'non' by a minus
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sign and 'and' by a plus signo Such a plus-minus algebra, where
plus is binary and minus is unary, will be a model of our basic
language. Ideally then, algebraic manipulation of expressions
in the algebra will model the behavior of expressions in our
basic language. This will be so as long as we remember that
the plus in our algebra is a symmetric binary formative and the
minus is a unary formative.

Here are the formation rules (rules of syntax, grammar) for
the algebra.

(i) Any letter is a term

(ii) The result of prefixing a minus to a term is a (negated)
term

(iii) The result of placing a plus between two terms is a term
(phrase)

(iv) Any phrase is a term

In producing phrases one or more of whose terms are them-
selves phrases we will make use of various kinds of parentheses
in the usual way to resolve syntactical amibiguities.

We saw earlier that 'and' (and now '+') is symmetric. A sec-
ond formal feature which it has is associativity. We exploit these
features in formulating two important transformation rules
(rules of derivation).

Commutation: Any phrase of the form 'X +Y' is equivalent
to a phrase of the form 'Y + X'
Association: Any phrase of the form '(X +Y) +Z' is equi v-
alent to a phrase of the form 'X + (Y + Z)'

Wheneverwe are given a sentence (sentential phrase, phrase
interpreted as a sentence) or a pair of sentences it is possible to
derive a new sentence. In doing so we make use of Cornrnutation
or Association or sorne other rule of derivation. Our formula-
tion of Cornrnutation and Association involved the formation of
phrases frorn terms (using plus). But often derivation procedes
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while inattentive to the internal structures of the sentences in-
volved. Let us institute a method for symbolizing sentences,
then, which allows us, when we need to, to ignore their internal
syntax. We will use lowercase letters to model sentences (keep-
ing in mind however that every sentence is nonetheless a term).
An important rule of derivation involving sentences is

Simplification: Any sentence of the form 'p' is derivable
from a sentence of the form 'p + q'

A sentence, e.g. 'p + q', which is formed from two other sen-
tences by use of the binary formative is called a conjunctive
sentence (or simply a conjunction). A nonsentential phrase, e.g.
'A + B', which is formed from two other terms by use of the
binary formative is called a conjunctive phrase. Simplification
applies only to conjunctive phrases which are sentential, i.e.,
to conjunctive sentences.

Our algorithm has one further rule of derivation. This one
involves the unary formative. The new rule is

Double Negation: Any term of the form '- - X' is equiv-
alent to a term of the form 'X'

4. Much of English can be translated into our basic language
and can then be modeled by our symbolism. The algorithm can
then be used to model inferences. Consider the following ordi-
nary English sentences.

(a) Some senators are honest

(b) Some politicians are liars and frauds

(e) Some politicians are not liars

(d) A senator was denounced

(e) Some senator was not honest

(f) It is false that a senator was bribed

(g) An honest but kind man is unloved
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(h) Cieero is a senator
(i) Cieero and Mareus are allies
(j) Cieero is Tully
(k) Honesty belongs to at least one senator

Wecan translate these into sentenees of our basie language and
then symbolize them as follows.

(a.l) 8 + H

(b.l) P + (L + F)

(c.I) P +-L

(d.l) 8 + D

(e.l) 8 +-H

(f.l) -(8 + B)

(g.l) ((H + K) + M) +-L

(h.l) C + 8

(i.l) (C + M) + A
(j.l) C + T
(k.l) H + 8

Inferenee is modeled by applying our derivation rules to sueh
formulae. For example, from (g.l) we eould derive the formula
for 'Sorne thing whieh is unloved is aman'. Thus:

1. ((H + K) + M) +-L
2. (H + K) + (M + -L)
3. (M +-L) + (H +K)
4.M +-L
5. -L +M

premise
1. Association
2. Commutation
3. Simplifieation
4. Commutation

However, in time, inference-modeling will reveal a sever
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limitation on the expressive powers of our new language. Con-
sider (a) and (k) aboye. By Commutation they should be equiv-
alent, each derivable from the other. Thus, 'S + H'='H + S'.
But suppose from (a) 1 wish to derive 'Something honest is a
senator'. This sentence is not synonymous with (k), yet it, like
(k), must be formulated as (k.l), Le. 'H + S'. A simple way to
avoid such a limitation (one suggested by Aristotle's custom in
the Analytics) is to require that aIl basic sentences of the form
'Sorne A is/are/was/were/etc. B' be paraphrased before formal-
ization as sentences of the form 'B belongs to sorne A'. This
would then mean that any formula of the form 'B + A' would
have to be read as 'B belongs to sorne A', and it could not be
read as 'Sorne B is A'.

Let us assume that we could resolve any other such problems
by adopting similar conventions of symbolization. Still our ba-
sic language, in spite of sorne increase in its expressive power
now, is, by comparison to any natural language, such as En-
glish, still quite limited in its powers of expression. Is it pos-
sible to expand or modify the language so that its expressive
capacities more closely approach those of a naturallanguage?

5. Let us begin by demanding that any statement (sentence
used to make a statement, express a proposition) of English
to be formulated into the language of our symbolic algorithm
first be paraphrased canonically. The canonical fragrnent of En-
glish, then, will consist of (a) basic sentences having one of the
foIlowing forms: 'A belongs to sorne B', 'nonA belongs to sorne
B', 'Non: A belongs to sorne B' or 'Non: nonA belongs to
sorne B'; and (b) amplified sentences. Amplified sentences will
contain one or more defined formative expressions. Any defined
formative will be defined in terms of just our unary 'non' and
binary 'and'.

Consider the quite unexceptional English sentence 'Every
dog is a canine'. It is not a basic canonical sentence as it stands.
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But it could be paraphrased by a sentence which, though less
colloquial, is a basic canonical sentence, viz.

Every dog is a canine

No dog is not a canine

It is not the case that sorne dog is not a canine

It is not the case that sorne dog is a noncanine

Non: sorne dog is a noncanine

Non: noncanine belongs to sorne dog

This final paraphrase does have one of our four basic canonical
forms. Though paraphrasing of this sort cannot be completely
eliminated, it is possible to minimize it by the introduction of
defined formatives. In the above example, for instance, it would
be easier and more natural to have a straightforward way to
express the English formative expression 'every. o o is. o • 'How
might this be done?

Let us symbolize our four basic canonical forms of state-
ments.

English. Canonical Form
Sorne hoy is able Ability belongs to sorne hoy
Sorne hoy is unable Nonability belongs to sorne hoy
No hoy is able Non: ability belongs to sorne hoy
No hoy is unable Non: nonability belongs to sorne hoy

Symbolization
A+B
-A+B
-(A + B)
-(-A + B)

Notice that so far all negation is unary and all conjunction is
binary. Now our sample sentence above was 'Every dog is a ca-
nine'. This was eventually paraphrased as 'Non: noncanine be-
longs to sorne dog', which would be symbolized as '- (- C +D)'.
Let us distribute the external minus here into the parenthetical
phrase: '- - C - +D'. Application of Double Negation would
yield: 'c - +D'. What we have now is a formula with a mi-
nus and a plus flanked by two terms. The minus here is no
longer unary and the plus is no longer binary (thus it can be
suppressed to give us 'c - D'). The distribution oí an external
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unary rninus into a phrase to yield an internal binary rninus is
analogous to such a distribution in arithrnetic. Thus:

-(-3 + 2)= --3 -+2=3 - 2

How should we read 'c - D'? Clearly: 'c belongs to every D'.
In effect, then, we have introduced a new binary formative, 'be-
longs to every', which we syrnbolize by a binary rninus, defined
in terms of our basic unary rninus and binary plus. So instead
of paraphrasing 'Every dog is a canine' several times to get
'Non: noncanine belongs to sorne dog' (i.e. '-( -C + D)'), we
can sirnply paraphrase it as 'Canine belongs to every dog' (i.e.
'C - D').

Staternents which are formed by connecting pairs of terms
by the defined binary formative 'belongs to every' are arnpli-
fied canonical sentences. An inspection of the four classical
categorical staternent forms shows that two are basic and two
are arnplified. 1 and O are basic; A and E are arnplified. Thus:

1: Sorne S is P; P belongs to sorne S; P + S

O: Sorne S is not P; nonP belongs to sorne S; -P + S

A: Every S is P; P belongs to every S; P - S

E: No S is P; Every S is nonP; nonP belongs to every S;
-P-S

(Notice that by adopting the rnathernatician's convention of
suppressing only unary pluses there is no danger of confusing
the unary and binary readings of any signo In the formulation
of E, for exarnple, the first rninus is unary but the second can
only be binary.)

We have introduced by definition the useful formative 'be-
longs to every'. But there are English formative expressions
which are not basic but which are not given, as 'belongs to ev-
ery' was, their own defined formative. An exarnple is 'only ...
is/are ... ' A sentence like 'Only gods are irnrnortal' is para-
phrased as 'No nongods are irnrnortal' and then as 'It is not

84



the case that sorne nongods are immortal'. This is then para-
phrased as 'Non: immortality belongs to sorne nongods', which
is canonical and symbolized as '- (- M + -G)'.

Our symbolic language now consists not only of our basic
unary minus and binary plus but a defined binary minus
and unary plus. Any tenn, then, is either positive, preceded by
a (possibly suppressed) plus, or negative, preceded by minus.
Every phrase consists of a pair of tenns connected by a positive
(plus) or negative (minus) binary fonnative. Every phrase is ei-
ther a compound tenn or a sentence. Just as our basic binary
plus could fonn either compound tenns from tenns or sentences
from tenns (including other sentences), so can our defined bi-
nary minus. When plus is used to fono a compound tenn from
a pair oftenns it is read as 'and', e.g. 'big and fat'. When it is
used to fonn a sentence from a pair of tenns it is read as '00-
longs to sorne', e.g, 'Wisdom belongs to sorne man', And when it
is used to fonn a sentence from a pair of sentences it is read as
'and', e.g, 'Reason belongs to every man and wisdom belongs
to every philosopher'. When minus is used to fonn a compound
tenn from a pair of tenns it is read as 'but not', e.g. 'big but
not fat'. When it is used to fonn a sentence from a pair of tenns
it is read as 'belongs to every', e.g. 'Wisdom belongs to every
philosopher'. And when it is used to fonn a sentence from a
pair of sentences it is read as 'if', e.g, 'Wisdom belongs to every
philosopher if wisdom belongs to every man'.

Today's standard systems of mathematicallogic insist on a
fundamental difference between the logic of sentences com-
posed from nonsentential tenns (the predicate calculus) and the
logic of sentences fonned from sentential tenns, sentences (the
propositional, sentential, calculus). By contrast ourfonnallan-
guage recognizes the formal similarities between the two kinds
of sentences. The fonnative 'belongs to sorne', which fonns sen-
tences from nonsentential tenns, and the fonnative 'and', which
fonns sentences from sentences, can share a common symbolic
expression because that expression, +, has just those formal
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features, e.g. syrnrnetry, which the two formatives have. Frorn a
nonformal point of view it rnay rnatter whether the binary plus
is read in one way or another (we can use our convention of
uppercase and lowerease letters to help us here), but frorn a
purely formal point of view there is no difference at aH. Here
are sorne exarnples of this parallelism.

B belongs to sorne A
B+A

B belongs to every A
B-A

nonB belongs to sorne A
-B+A

nonB belongs to every A
-B-A

Non: B belongs to sorne A
-(B + A)

q andp
q +p

q ifp
q -p

nonq andp
-q +p

nonqifp
-q-p

Non: q andp
-(q +p)

Suppose we want to formulate a sentence which uses our bi-
nary formatives both as term connectives and sentence con-
nectives, e.g. 'If every philosopher is wise then sorne logician
is wise'. This is first paraphrased as the canonical sentence,
'Wisdorn belongs to sorne logician if widsorn belongs to every
philosopher'. We rnight then syrnbolize this as: '(W +L) - (W -
P)'. If any doubt rernains as to whether the first binary rninus
here is to be read as a term or sentential connective we could
adopt a convention for using different bracket types. For exam-
pIe, we could agree to use square brackets only around sen-
tential phrases and angular brackets around cornpound terms.
Thus '[A + Bl + [C + D]' would syrnbolize 'Sorne D is C and
sorne B is A' while '(A +B) + (C +D) , would syrnbolize 'Sorne
D which is C is a B which is A'.

6:-'fheTnrtoduction of defined formatives, along with sorne mi-
nornotational conventions have given our arnplified formal lan-
guage far greater expressive capacity than our basic language.
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It is not yet the fu11 logie of English, but a large number of
English statements can be formulated by it.

We state now the rules of syntax for the amplified language.

(i) Any letter is a term

(ii) The result of prefixing a minus/plus to a term is a (nega-
tive/positive) term

(iii) The result of plaeing a minus/plus between two terms is a
phrase

(iv) Any phrase is a term

We also have the fo11owing notational eonventions.

(a) Any plus prefixed to a term may be suppressed

(b) Upperease letters symbolize simple terms; lowerease let-
ters symbolize sentential terms

(e) Square braekets mark sentential phrases; angular braek-
ets mark eompound terms

The derivation rules for the amplified language will inelude
those rules already formulated for the basic language, Commu-
tation, Association, Simplification and Double Negation. More-
over, new rules can be formulated on the basis of the formal
properties of our new binary minus. Remember that the binary
plus is symmetrie and associative. The binary minus, however,
is neither symmetric nor associative. But, unlike binary plus,
it is transitive. Thus we can formulate a rule of inference which
preserves the faet that from 'A - B' and 'B - C' we can derive
'A - C'. Notice that such a rule would not be a rule of immedi-
ate inference, as our other rules are. It would be a rule which
govems the inference of one sentenee from a pair of sentenees.
It is a rule of mediate inference.

Sy11ogism: Any term whieh belongs to a11of another term
belongs to that to whieh that other term belongs
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In both of the sample inferences aboye a term ('A ') which be-
longs to a11of another term ('B'), thus the first premise, is con-
cluded to belong to whatever that second term belongs (viz.
every or sorne C), thus the second premise. The second term,
the one cance11ed out, is the scholastics' "middle" termo In
arithmetic the fo11owing equation could be seen as applying
Syllogism,

(2 - 1) + (1 + 3)=(2 + 3)

By adopting our notational conventions, then, we can model
inferences by use of Syllogism simply by cancelling middle
terms, Le. pairs of terms within the scopes of opposite signs.

We add next an axiom which depends upon taking both of
our negative binary formatives as reflexive.

Axiom: Any statement of the form 'A - A' is always true

Finally, we add one more rule of immediate inference, this
one involving our binary minus. Reca11 that the binary minus
was introduced by distributing an external unary minus into a
phrase formed by connecting a pair of terms by a binary plus.
Thus:

-(X + Y) = - X - Y and - (-X + Y) =X - y
These kinds of equivalences call to mind the old rule of obver-
sion. Consequently

Obversion: Any phrase of the form '-(X + Y)' is equiva-
lent to a phrase ofthe form '-X - Y'

We have seen that our amplified language excedes the ba-
sic language in expressive capacity. Fitted with our plus-minus
algorithm it is easy to test many inferences for validity and to
prove them. For example, consider the Cesare syl1ogism:

NoP isM
Every S is M
So, no S is P
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We can symbolize it as

-(M + P)
M-S

-(P + S)

A necessary condition for the validity of such an inference will
be that the algebraic sum of the premises must equal the con-
clusion, e.g.

- (M + P) + (M - S)= - (P + S)

Next consider the argument

SomeP isM
Every M is S
So, every P is S

We symbolize this as

M+P
S-M
S-P

In this case, since the algebraic sum of the premises does not
equal the conclusion-the argument is invalido Finally, a proof
of Cesare would look like this.

1. -(M + P)
2. M-S
3. -(P + M)
4. -P-M
5. -P ~S
6. -(P + S)

premise
premise
1, Commutation
3, Obversion
2, 4, SyHogism
5, Obversion

7. If naturallanguage has a logic (something assumed by all
traditionallogicians but denied by many modem mathematical
logicians), then it ought to be possible to devise a formal lan-
guage which models all kinds of statement-making sentences
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and models inference patterns among them. In other words, it
ought to be possible for the logician to construct a formal system
which closely matches the expressive and inferential powers of
a language such as English. Our amplified formal language is
not such a system. In order to achieve such a system we need
to find ways of formalizing statements of all kinds (including,
for example, relational and identity statements). Our algorithm
must also be able to model inferences involving all such kinds
of statements. A system such as that would amount to afull for-
mallanguage. We will suggest now ways to alter and augment
the amplified language to produce a fulllanguage.

Let us begin by looking at the formalizing of statements. Con-
sider a sentence of the general form 'p and q or r', The sentence
is syntactically ambiguous, so that its truth or falsity will de-
pend upon how it is formally analyzed-as a conjunction or
a disjunction. Grammarians and logicians of course are quite
skilled at disambiguating such sentences. But ordinary speak-
ers are well-equipped to engage in a variety of formal tasks
such as the disambiguation called for here. We use punctua-
tion in writing and pauses and emphases in speaking in order
to indicate the scopes of different formal expressions like 'and'
and 'or'. One interesting way in which we might disambiguate
our sentence is to "split" the second connective using one half
to mark the start of its range. We make our sentence a disjunc-
tion by splitting 'or' into 'either ... or'. Thus: 'Either p and q or
r', a sentence clearly formalized in the normal fashion among
today's logicians as '(p·q)Vr'. Had we intended our sentence to
be a conjunction we could have placed the 'either' after 'and'.
Thus: 'p and eitherq or r', a sentence formulated as 'p' (q V r)'.
This same kind of splitting holds for 'and' when it occurs as
the second of a pair of sentential connectives in a syntactical-
ly ambiguous sentence. Suppose our original sentence looked
like this: 'p or q and r', In this case our choice of making this a
conjunction or a disjunction can be effected by splitting 'and'
into 'both. .. and' and placing the 'both' at the beginning of
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the conjunction range. Thus 'Both p or q and r' would have the
fonn '(p V q) . r', while 'p or both q and r' would have the fonn
'pV(q·r)'.

For the purposes of disambiguating sentences like those
aboye the choice of using either split or unsplit versions of
sentential connectives like 'and' and 'or' is extremely useful.
In cases where no formal ambiguity is threatened either choice
will do. For example, there is only a stylistic difference between
'John will go to the party and Tom will go to bed' and 'Both John
will go to the party and Tom will go to bed'.

The sentential connectives 'and' and 'or' are not the only
ones which have split versions. Indeed, one sentential connec-
tive is usually used in its split fonn, viz. 'if. .. then', Its two
unsplit fonns are 'if' and 'only if". We could fonn an ambigu-
ous sentence like 'p and q only if r', but the split 'if ... then' is
so much more normal for most speakers that we would proba-
bly only form one of its two possible interpretations: 'If p and
q then r' (Le. '(p . q)r'), or 'p and if q then r' (Le. 'p . (qr)').
We can say 'q if p' or 'p only if q', but we would usually say
'If p then q'. Another sentential connective has an unsplit fonn
far rarer in ordinary discourse than 'only if'. Its unsplit version
is 'neither. .. nor'. (Sorne natural languages, like Hebrew, do
have an unsplit version.) Unsplit 'neither ... nor' is the logi-
cians' Sheffer stroke (call it 'nand').

Thus far we have seen that four quite ordinary sentential con-
nectives can occur in both split and unsplit guises.

Table 1
Split
both and
either or
neither nor
if... then

Unsplit
and
or
nand
only if/if

All of these expressions are used not only to connect sentences
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but to connect pairs of nonsentential terms as we11.We say 'John
is (both) a gentleman and a scholar', 'Tom is always (either)
sleeping or resting', 'Neither dogs nor cats are allowed in the
store', 'Sorne men are happy only if unmarried'. And the first
three connectives are frequently used to connect pairs of terms,
one or both of which are singular. Thus: '(Both) John and Tom
were invited to the party', 'John took (either) Mary or Po11y',
'Stars and the moon are visible at night', 'Po11y loves neither
Fred nor Tom'. So the expressions listed in Table 1are used to
connect a11kinds of terms, We have as we11in English another
"connective" which operates on both sentential and nonsen-
tential terms, viz. negation.

Let us concentrate on English binary connectives. Are there
any others besides those listed in Table l? Consider the sen-
tence 'Sorne singers are performers'. Nonnally we do not think
of the formal expressions here, 'sorne' and 'are' as connectives.
But surely we could. The two terms 'singers' and 'perfonners'
are more clearly connected by 'sorne ... are' than 'a creature
was stirring' is "connected" by 'not' in 'Not a creature was stir-
ring'. Why not say that just as a pair of sentences can be con-
nected by 'both. .. and' to form a syntactica11y more complex
sentence, a pair of terms can be connected by 'sorne ... are/is'
to form a sentence? The mere fact that the material elements
here are nonsentential terms cannot prohibit 'sorne ... are/is'
from being a connective. After a11,we have already seen that in
ordinary English usage all of our connectives can connect non-
sentential terms as we11as sentences. And, since we choose to
treat 'sorne ... are/is' as a term connective, then 'every ... is'
('a11... are') and 'no ... is' must be taken as term connectives
as we11.

These additional connectives are clearly the split versions of
our old unsplit connectives, 'belongs to sorne', etc. Our ampli-
fied language paraphrased a11sentences with these split con-
nectives as sentences with corresponding unsplit connectives.
But in English the split versions are often more natural. For
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our full formal language we need to find a way to give a split
symbolization for such connectives. And this in spite of the fact
that both traditional and modero logicians have tended to favor
the unsplit versions for logical analysis. One challenge, then,
is to devise a system oí split binary connectives which is as
simple to use as the amplified system.

The logical syntax of phrases in the amplified language is
quite simple. Pairs of tenns, each of which ispositive or neg-
ative, are connected by an intervening positive or negative bi-
nary connective to fonn a phrase. The logical syntax of phrases
in the new fulllanguage is only slightly more complexo Again,
pairs of tenns, each of which is positive or negative, are con-
nected by binary connective. But now the connective is split,
one part preceding the first tenn, the other preceding the sec-
ond tenn. Consider the classical 1 statement, e.g. 'Sorne S is
P'. With the amplified system we first paraphrased this as 'P
belongs to sorne S', and then fonnulate it as 'P +S', with an un-
split binary plus. Let us forego such paraphrase. We will split
the old binary plus here into two pluses--one for 'sorne' and
the other for 'is'. Moreover, this allows us to retain the natu-
ral word order of the English original. The two signs together
constitute a tenn connective, fonning phrases from tenns. Con-
sidered separately, the first plus ('sorne') is a "quantifier"; the
second plus ('is') is a "qualifier" ("copula"). So the logical syn-
tax of the split connectives is simply the old subject-predicate
syntax. Our subject is the quantified tenn, '+S' ('sorne S') and
our predicate is the qualified tenn '+P' ('is P'). As with the
amplified system, we have been suppressing most plus signs
(but never those operating as quantifiers). Retrieving these for
our 1statement gives us the following.

+[ +( +S) + (+P)]

Here the first plus is the unary positive sign on the entire sen-
tential phrase; the second plus is the quantifier; the third plus
is the unary sign 00 S; the fourth plus is the qualifier; and the
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fifth plus is the unary sign on P. The ordered pair consisting of
the second and fourth (i.e. the quantifier and qualifier) consti-
tutes the binary connective joining '+S' and '+P' to fono the
phrase.

The splitting of binary connectives promises more natural
symbolic forms. We have seen this for 1statements. Let us con-
sider now the other classical categorical forms, An O statement,
'Sorne S is not P', can be easily formulated now as '+S - P', the
abbreviation of '+ [+ (+ S) + (- P)]'. A and E statements are
the contradictories (negations) of O and 1 statements respec-
tively. Initially, then, let us fonoulate them accordingly, i.e, A:
'-[ +S - P]' and E: '-[ +S + P]'. Distributing external mi-
nuses now yields A: '-S +P' and E: '-S - P'. Thus, while the
particular quantifier ('sorne') was symbolized by plus, the uni-
versal quantifier ('every') is symbolized by minus. Notice that
the traditional fono of E has always been 'No S is P', which
itself abbreviates 'Not an S is P'. And this sentence has the
fono '-[ +S + P]', with the external minus undistributed. By
distributing it we have formed the equivalent obverse, viz. 'Ev-
ery S is nouP'. In summary, then:

1 SomeSisP +[+(+S) + (+P)]
O SomeSisnotP +[+(+S) + (-P)]
A EverySisP -[+(+S)+ (-P)]
E NoSisP -[+(+S) + (+P)]

+S+P
+S-P
-S+P
-S-P

Split connective notations such as '+ ... +' need not be in-
terpreted only as nonsentential term connectives. They might
just as well be construed as sentential connectives. For exam-
ple, 'Both p and q', the split version of 'p and q' [i.e. 'q + p')
could by symbolized as '+p + q', where the first plus symbol-
izes the first part of the split connective ('both') and the second
plus symbolizes the second part ('and'). As we will see, our
ability to read connectives in this way, as applying to senten-
tial and nonsentential terms alike, is due to the formal features
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shared by such pairs of fonnatives as 'sorne. .. is' /'both ...
d' , . '/'·C h' d ' . '/' . h 'an , every ... IS l ••• t en, an no ... IS neit er ... nor.

In summary,

Formula

+X+Y
+x-y
-X+Y
-X-y

Table 2
Term Reading

Sorne X is Y
Sorne X is not Y
Every X is Y
NoX is Y

Sensenzial Reading

BothX and Y
Both X and not Y
IfX then Y
If X then not Y
(Neither X nor Y)

Here are sorne sample sentences fonnulated using our split
plua-minus notation.

Sorne boys are unwashed
Every dog is loyal
Not all philosophers are wise
Every rnan who is unwed is a fool
If sorne rnan is unwed, all girls are sad
If it's raining then it's cold
It' s not both raining and not cold
It's not raining or it's cold
It's raining or it's cold
It' s neither raining nor cold
If it rains then sorne cows are wet

+B-W
-D+L
-[-p + W]
-(M - W) +F
-[+M-W] + [-G+S]
-r + e
-[+r-e]
-[-[-r]] - [-e]
-[-r] - [-e]
-r -e
-r + [+C + W]

Whatever effectiveness the amplified system might have had
was due to the fact that the fonnal features of the fonnatives
modeled those of their corresponding naturallanguage expres-
sions. Thus, the symmetry of 'and' and 'belongs to sorne' was
preserved in the symmetry of the unsplit binary '+'. And just
as neither 'only if" nor 'belongs to every' are symmetric, neither
is the unsplit binary '-'o This preservation of formal features
by the notation also characterizes our new formal language.
The symmetry of '+ ... +' matches that of 'both. .. and' and
'sorne ... is'. Likewise, 'neither ... nor' and 'no ... is' are sym-
metric and so is '- ... -'. Generally,
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+X + Y = + Y + X and - X - Y = - y - x
Expressions such as 'if then' and 'every ... is' are not sym-
metric, and neither is '- +'. Laterwe will make use ofsuch
formal features in formulating derivation rules for the full for-
mallanguage.

8. First, however, we must admit that while our new language is
closer in syntax to English, we cannot yet say that its expressive
power is much greater than that of the amplified language.

Sometimes in English we construct a nonsentential term us-
ing a binary connective read as a sentential connective. For
example, we say 'Sorne men are both gentlemen and scholars',
where the (split) connective, 'both ... and', forms not a sen-
tential phrase (sentence) but a compound termo Thus we would
formulate our sentence as '+M + (+G + S)'. In other words,
expressions such as 'both ... and', 'if. .. then', 'either. .. or'
and 'nei ther. .. nor' can be used to form phrases which are
sentences or phrases which are compound terms. Similarly, ex-
pressions which we have so far seen as forming phrases only
from nonsentential terms, viz. 'sorne ... is', 'every ... is', and
'no ... is', can also be used to form both sen ten tial phrases and
nonsentential phrases. In the latter case, however, such phras-
es are not compound terms-they are relational terms.

Unless we can formulate relationals using our new language
we will be unable to match much of the expressive power of
a naturallanguage like English. Sentences such as 'Every boy
loves a girl', 'Whoever draws a circle draws a figure' and 'Sorne
people who write books are logicians' contain relational terms,
Thus, at this stage, they seem to lie beyond the expressive pow-
ers of our system. We can formulate such sentences, however,
once we recognize that relational terms are always construct-
ed from a pair of terms (usually just simple ones) by means
of an unsplit binary connective. Consider the sentence 'Sorne
senator bribed sorne judges', The subject term here is 'sena-
tor' and the predicate term is the relational expression 'bribed
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sorne judges'. Now 'bribed sorne judges' consists of a pair of
terms connected by 'sorne'. This is clearly an unsplit binary
connective. Using our old unsplit notation, we could syrnbol-
ize the relational term by 'B +J'. Likewise, we could syrnbolize,
say, 'loves every girl' as 'L - G'. Now in English we use these
"quantifiers" in just this way, as unsplit binary connectives
forming relational terms frorn ordered pairs of terms (ordinarily
a transitive verb and a noun). Nevertheless, we want a uniform
notational systern, one which splits, now, all binary connec-
tives. At the sarne time we want to retain a syntax close to that
ofEnglish.

Let us take a relational term like 'bribed sorne judges' to
have the general form: predicate-subject, where the qualifier
is suppressed. It is easy to think of 'sorne judges' as a sub-
ject, i.e, a quantified termo And we can think of the predicate
here as 'was bribing', with the qualifier, 'was', suppressed. The
entire sentence is subject-predicate, where the predicate itself
is a cornplex term (relational) of the form: predicate-subject.
By splitting the binary connective forming the relational term
(or, equivalent1y, by retrieving the suppressed qualifier) we can
formalize all expressions involving relational terms by rneans
of the split connective notation. Using { and } to indicate rela-
tionals, we could syrnbolize 'Sorne senator bribed sorne judges'
as '+5 + {+B+J}'. Here the '+ ... +' of'{ +B+ J}' is a split
syrnbolization of the unsplit 'sorne' of 'bribed sorne judges'.

One problern is yet to be solved if we are to have an adequate
systern for formalizing relationals. We have seen that a sen-
tence such as our sarnple aboye has the general form: subject-
{predicate-subject}. Now the interpretation of the predicate
is tied to the order of the two subjects here. 'Sorne senator
bribed sorne judges' and 'Sorne judges bribed sorne senator' are
quite different sentences. Let us call the subject of a predicate-
subject relational term the "object". So our sentence has the
form: subject-{predicate-object}. Sornetirnes when we reverse
the order of subject and object in such cases the result is a
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different sentence all together; other tirnes when we do so we
form what grarnrnarians call the "passive transformation" of the
original sentence. Thus, while 'Sorne judges bribed sorne sen-
ator' is a different sentence all together, 'Sorne judges were
bribed by sorne senator' is rnerely the Iogically equivalent pas-
sive transformation of 'Sorne senator bribed sorne judges'. The
connection between the interpretation of a relational predicate
and the order of subjects and objects is so important logically
that we need to keep track of it in our notation.

Frorn now on we will give a nurnerical subscript to each sub-
ject and each object. And we will subscribe to each relational
predicate term the appropriate subject and object nurnerals in
the order determined by our interpretation of that termo For ex-
ample, we will syrnbolize 'Sorne senator bribed sorne judges'
as '+81 + {+B12 + 12}'. The order of subscribed numerals
on the relational predicate term indicates that it is to be in-
terpreted so that the first subscribed term bribed the second.
'Sorne judges bribed sorne senator' would then be syrnbolized as
'+12 + {+B21 + 8I}' where the order of subscribed nurnerals
on the relational predicate now indicates that what is symbol-
ized by the term indexed by 2 bribed what is syrnbolized by the
term indexed by l. Finally, 'Sorne judges were bribed by sorne
senator' is syrnbolized by '+12 + {+B12 +8I}'. Note that here,
as in the first case, the order of the nurnerical subscripts on the
relational predicate term indicates that the senatordid the brib-
ing and the judges got the bribes. The passive transformation,
then, is effected sirnply by altering the order of subjects and
objects without altering the order of subscripts on the relational
predicate termo Here are sorne further examples.

Every boy loves a girl -BI + {+LI2 + G2}
Every hoy loves every girl -BI + {+LI2 - ~}
Whoever draws a circle draws -{ +D + eh + {+DI2 + F2}

a figure
Sorne people who write books + ( + PI + { + WI2 + B2}) + L

are logicians
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Aman gave a rose to a woman +M1+ {+{ +G12 + R2h3 + W3}

In this last case we could adopt a convention for amalgamat-
ing relational terms nested inside relational terms, fusing their
subscribed numerals so as to preserve order. Thus we could
simplify our formula as follows: +Ml + {+C123 + R2 + W3}.
We use this convention in the following examples.

Aman gave a woman a rose +MI+ {+GI23 + W3 + R2}

A woman was given a rose by aman + W3+ I+GI23 + R2 + MIl
A rose was given lo a woman by a man +R2 + +GI23 + W3+ MI
A rose was given by a man lo a woman +R2 + +GI23 + MI+ W3

Notice that, because of the shifting order of subjects and
objects, the 'C123' is read as 'gave' in the first case, as 'was
given ... by' in the second, as 'was given to ... by' in the third,
and as 'was given by ... to' in the fourth. All of the last five sam-
ple sentences are logically equivalent passive transformations
of one another.

9. A full formallanguage such as the one we are after must be
able to give a logical analysis of all kinds of naturallanguage
expressions. In particular, it must offer a means of formalizing
categoricals, compound sentences (such as conditionals and
disjunctions) and relational expressions. The old traditional
syllogistic provided techniques for logically analyzing the first
kinds of expressions only. Leibniz 'devoted much of his logi-
cal work to an attempt to incorporate into syllogistic all other
kinds of expressions, thus making syllogistic a genuinely uni-
versal formal system. In our attempt to build such a system,
what we have called a full formallanguage, we have found ways
to formalize categoricals, compound sentences and relationals.
Moreover, we have made use of just our unary and binary plus-
es and minuses. There is one other kind of natural language
expression which cannot be ignored by an adequate logical sys-
tem, viz. singular terms (and phrases involving them).

In the standard logic popular today the logic of singular terms
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is quite different from the logic of general terms.l It is not ob-
vious to everyone however that the difference here reflects one
which holds for singulars and generals in natural language.
In a natural language like English general terms can appear
in both subjects and predicates of sentences. Thus in 'Some
singer is a performer' and 'Every performer is vain' the general
term 'singer' occurs in the b ibject of the first sentence, the term
'vain' appears in the predicate of the second, and the term 'per-
former' occurs in the predicate of the first and in the subject of
the second. It is this ability of general terms to occupy both sub-
ject and predicate positions which makes traditional syllogistic
reckoning possible. General terms can be quantified (to form
subjects); or they can be qualified (to form predicates). In our
examples aboye 'performer' was qualified in the first sentence
and quantified in the second.

General terms, as we have seen, can be qualified, quantified,
negated, conjoined/disjoined (to form compound terms). These
features were genera11y understood by traditionallogicians and
grammarians. None of these ideas however has survived as part
oftoday's standard logic. According to the theory oflogical syn-
tax upon which modem mathematical logic is built, there are
two kinds of sentences-those with no syntactical complexity
at a11 ("atomic" sentences), and those with some syntactical
complexity ("molecular" sentences). Atomic sentences always
consist of a predicate and one or more subjects. Predicates
are always general terms; subjects are always singular terms.
Atomic sentences never contain any formative expressions. In
particular, they never contain quantifiers, qualifiers, negators,
conjoiners or disjoiners. The presence of any formative element
is a guaranteed indication of syntactical complexity (molecu-
larity). Such a logic gives no role at all to qualifiers. The other
formatives, moreover, are never allowed to operate on non-
sentential terms (even general ones). Quantification, negation,

1 See Englebretsen, [6], [9] and [10].
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conjunction, etc. can only apply to sentences to form syntac-
tically more complex sentences. Thus 'John is a singer' is an
atomic sentence consisting of two syntactically simple expres-
sions: a predicate, 'is a singer' (symbolized 'S') and a subject,
'John' (symbolized 'j'). The sentence has the form 'Sj'. Sen-
tences such as 'John is not a singer', 'John is a singer and a
dancer' and 'Sorne singer is a dancer' are all molecular, con-
structed from atomic sentences and formatives on them. 'John
is not a singer' is taken as the negation of 'John is a singer'
and so is symbolized as '''-'[Sj]'. 'John is a singer and a dancer'
is viewed as a conjunction of the two atomic sentences "John
is a singer' and 'John is a dancer' and is thus symbolized as
'[Sj] . [Dj]'. 'Sorne singer is a dancer' is seen as a quantifier
applied to a molecular sentence. The quantifier is 'there exists
sorne thing such that' and the molecular sentence is a conjunc-
tion of 'it is a singer' and 'it is a dancer'. It is formalized as
'(:Jx)(Sx . Dx)'. This is a clear example of how the modero 10-
gician's identification of predicates with general terms forces
him or her into creating pronominal subjects. The traditional
logician simply took 'Sorne singer is a dancer' to be a quanti-
fied term concatenated with a qualified termo The traditional
logician saw this sentence as saying of sorne singer that it is
a dancer. The contemporary logician sees it as saying of sorne
thing that it is a singer and it is a dancer. One kind of logician
sees it as about a singer, the other sees it as about a thing (a
bare particularj.f

Just as general terms can be quantified, qualified, negated
and compounded, so too mutatis mutandis, can singulars. Too
distinctions between general, singular and sentential terms are
semantic only. Syntactically they are aH on all fours with
one another. Thus the logic of singulars is not different from
the logic of generals. And a logic which recognizes this enjoys
the advantage of predicating (qualifying) singulars, thus elimi-

2 Quine admits this explicitly in Quine [21], p. 165 and [22], p. 25.
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nating the need to have a special "identity theory" appended to
the main system.3 Moreover, a logic such as ours, which recog-
nizes sentences as terms, fit for all the logical roles reserved for
any term, enjoys the not insubstantial advantage over today's
standard logic of having a single common logic of terms and
sentences. So a logic of sentences is not primitive and basic to
a logic of terms. It is a part of the logic of terms. Such a logic
gets by with one calculus instead of two.

So, singular terms can be quantified, predicated, negated
and compounded. Since the first two of these notions have been
well-surveyedl and since our thoughts conceming the notions
of negated singulars have been fairly widely broadcast (see [6],
[7], [8] and [10]), we merely note here that the negation of a
singular term is not a singular. The mistaken belief that the
negation of a singular term is singular (moreover, one which,
if it denoted, could only denote an impossible object) has been
the source of much confusion for many philosophers, logicians
and grammarians. We note as well that singular terms in sub-
ject positions always have an implicit quantity, but, following a
suggestion of Leibniz and Sommers, the quantity is arbitrarily
either particular or universal. We will symbolize this "wild"
quantity by '*', e.g, '* S + W' for 'Socrates is wise'.

It is wise to remember that not every use of 'and' is aimed
toward conjunction. Consider the sentence 'Some logicians are
scholars and gentlemen'. Here the compound term 'scholars
and gentlemen' is the result of conjoining the two terms 'schol-
ars' and 'gentlemen'. We could paraphrase the compound term
as 'both scholars and gentlemen' by splitting the connective.
Whenever a compound term of the form 'P and Q' can be para-
phrased by thus splitting the connective we will call it a gen-
uine conjunction. Not all conjunctions are genuine. Consider
the sentence 'All the guests were men and women' (presumably,

3 See [23] and chapter 6 of [26], and [5].
4 Especially in the works by Sommers and Englebretsen,
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no children were invited). Here the 'and' could not be split. The
conjunction here is a pseudo conjunction. Pseudo conjunctions
are, logically, disjunctions. We could paraphrase our sentence
as 'Al1 the guests were men or women'.

Let us tum now to singulars, Consider the quite unexception-
al English sentence 'Al and Betty are together' and 'Al and Betty
are happy'. Today's standard mathematical logician usual1y for-
malizes these as 'Wab' and 'Ha & Hb' (where 'w' is read as
'is with' and 'H' is read as 'is happy'). But now why is 'Al and
Bettyare together' taken as an atomic sentence with a relational
predicate while 'Al and Betty are happy' is taken as a molecular
sentence conjoining the two atomic sentences 'Al is happy' and
'Betty is happy'? Surface appearances suggest, contrarily, that
'Al and Betty are together' and 'Al and Betty are happy' should
have the same logical structure. They certainly have the same
grammatical structure (cf. 'Al and Betty are together and hap-
py'). Our formal language can preserve this grammatical simi-
larity. First, notice that each conjunction here is pseudo. In both
sentences 'Al and Betty' is paraphrased in the same way and
formalized as '( -( -A) - (-B))' ('what is either Al or Betty' or
'things which are either Al or Betty'). Now since 'Al and Betty'
(read as a pseudo conjunction, i.e., a disjunction) is a subject
term here, it is, implicitly quantified. In this case the logical
quantity is universal (cf. 'Apples and oranges are fruits'). The
two sentences have the forms: '-(-(-A) - (-B)) + T' and
'- ( - (A) - (B)) + H', where 'T' is read 'together'.

Consider next a straightforward disjunction such as 'either Al
or Betty' (as in 'The winner is either Al or Betty' and 'Either
Al or Betty is a winner'). Here the compound term is simply
transcribed as '(-(-A) - (-B))'. Suppose now that we have
a sentence which we formulate as '- ( - (-A) - (- B)) + T'.
How might that sentence look in English? Perhaps 'Both Al
and Betty taught school'. And now we can begin to see the se-
cret of singular compounds. Conjunctions of singulars, terms
of the form 'A and B', are pseudo conjunctions. This is so 00-
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cause, assuming the uniqueness of each individual, a singular
only applies to (denotes) one individual. A thing can be both
short and fat, both red and square, or both even and prime,
but nothing can be both Al and Betty, Paris and London, or
2 and the square root of 11. When it comes to compounds of
singulars, such terms are either genuine disjunctions or pseu-
do conjunctions-none is a genuine conjunction. How then do
we distinguish between these two kinds of disjunctions? As it
turns out, when such terms are predicated (qualified) there is
no difference-they are always simply disjunctions. Sentences
formed as '+T + (-(-A)-(-B))' and '-T+ (-(-A)-(-B))'
would be read respectively as, e.g., 'Sorne teacher is either Al
or Betty' and 'Every teacher is Al or Betty'. Conversion of each
such sentence would result in a sentence of the general form
'+(-(-A) - (-B)) + T'. And it is the quantity of quanti-
fied compounds of singulars which determines whether they
are genuine disjunctions or pseudo conjunctions. When the
logical quantity is particular the compound is a genuine dis-
junction. When the logical quantity is universal the compound
is a pseudo conjunction. Thus '+(-(-A) - (-B)) + T' and
'-(-(-A) - (-B)) + T' could be read as 'Al or Betty teach'
and 'Al and Betty teach' respectively,

But philosophers have had sorne confused and muddled
things to say about compounds of singulars.P This has usual-
ly been due to their failure to appreciate two important points.
First, they take a11pseudo conjunctions of singulars to be gen-
uine conjunctions. This has led them to say of subject terms
such as 'Al and Betty' that they must name, denote, impossible
objects, since what 'Al and Betty' denotes must have the prop-
erties of both Al and Betty; but many properties which Al and
Betty have are logically exclusive (e.g., male/female, tall/short,
bald/blond). The corrective here is simply the recognition that

5 The confusión is found in [28] and [29]; [31]; [17]; [14]. Brief re-
sponses to [28], [29], [31] and [14] are found in [6], [7], [8] and [lO].
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no conjunction of singulars is genuine. Their second misun-
derstanding is more basic. The standard mathematicallogician
has taught them that a11 logical subjects must be singular. It
fo11ows from this that sentences like 'Al and Betty teach' and
'Al or Betty teach' either have singular subjects or are com-
pounds of sentences with singular subjects. But, since treating
compounds such as 'Al and Betty' and 'Al or Betty' as names of
single individuals is nonsense, the functional expressions here
must be seen as sentential connectives, contrary to surface ap-
pearances. The simple remedy in this case is to give up the
dogma that a11logical subjects must be singular. 6

10.The idea that a11logical formatives could be viewed as signs
of opposition comparable to the plus and minus of mathematics
provided us with the essential clue necessary for building a for-
mallogical calculus for naturallanguage. The basic plus-minus
system led to the amplified system, and then to the fu11 sys-
temo Our claim is that a system such as the one sketched here
is simple, powerful and natural. This simplicity derives from
the fact that a11formatives are given a uniform symbolic repre-
sentation as either plus or minus signs. Moreover, these signs,
like those of arithmetic, are systematica11y ambiguous in that
they have both binary and unary interpretations. We are able
to model naturallanguage statements by symbolic expressions
which nearly perfectly match those statement forms when they
are (or are paraphrased as) sentences using split binary con-
nectives. This yields a formal language far more natural (i.e.,
closer in syntax to naturallanguage) than that of the standard
logical language taught in the schools today. Fina11y, by using
the simple signs of arithmetic along with variable letters, we

6 Note that while the traditionallogician chose to admit only one log-
ical subject for each sentence (but permitted logical subjects to have any
number of referents), the contemporary logician chooses to admit only one
referent for each logical subject, i.e., all logical subjects are singular
(but permits sentences to have any number of logical subjects). A more
detailed discussion of compound singulars is found in [l3].
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can use simple arithmetic reckoning to model the logical reck-
oning encountered in ordinary deduction. And we can do this
for all sorts of such deductions-and aH this power in a single,
simple, uniform algorithm (see [26] and [11]).

The lexicon of our fuH system consists just of simple terms
(singular or general). When used, each term is either positive
or negative. Thus every used term is prefixed by either a plus
or minus. Complex expressions (phrases) are a1ways the result
of a pair of used terms being connected by a binary connective.
A phrase is considered a sentential term (sentence) whenever
either the two constituent terms are themselves sentential or the
split binary connective is construed as categorical-forming, i.e.,
when the first member of the connective is taken as a quantifier
and the second is taken as a qualifier. Otherwise the phrase is
a nonsentential, compound termo A phrase whose split binary
connective is interpreted so that the first element of the con-
nective is read as a qualifier and the second as a quantifier is a
relational termo Since all used terms are either positive or neg-
ative, all used compound, sentential and relational terms are
either positive or negative. Certain notational conventions are
useful in the transcription of naturallanguage expressions into
formallanguage expressions. As in arithmetic, unary plus signs
(except those interpreted as particular quantifiers) can be sup-
pressed. Uppercase letters represent simple terms; lowercase
letters represent sentential terms. Distinct sets of parentheses
can be used to indicate compound, sentential and relational
terms. Finally, in the case of relationals, we can use a system of
numerical subscription to keep track ofthe interpretation ofthe
relative predicate term and the order of subjects and objects.
The generallogical form of any statement will be as foHows: a
unary plus or minus indicating whether the sentence is posi-
tive or negative, the first element of a binary connective (read
either as a particular quantifier or a 'both' if plus; as either a
universal quantifier or an 'if' if minus), a unary plus or minus
indicating whether the first term is positive or negative, a first
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term (simple, compound, relational or sentential), the second
element of the binary connective (read as either a positive qual-
ifier or an 'and' if plus; as either a negative qualifier or a then if
minus), a unary plus or minus indicating whether the second
term is positive or negative, a second term (simple, compound,
relational or sentential).

The formulation of rules of inference for the full system, as
for the basic and amplified systems, reflects the formal features
of our connectives. Thus, since '+ ... +' is symmetric, partic-
ular affirmative categoricals and their negations and conjunc-
tions and their negations are all commutative. Since '- ... +'
is transitive, an appropriate universal affirmation or a condi-
tional can be deduced from a pair of universal affirmations or a
pair of conditionals respectively. These and other such formal
features (viz., those mentioned aboye in our outline of the ba-
sic and amplified systems) allow us to use the following rules
of immediate inference.

Commutation: Any phrase of the form '+X + Y' is equiv-
alent to a phrase 'of the form '+y + X'

Association: Any phrase of the form '+ (+X + Y) + Z' is
equivalent to a phrase of the form '+ X + (+ y + Z)'
Simplification: Any sentence ofthe form '+p' is derivable
from a sentence of the form '+p + q'

Double Negation: Any term of the form '- - X' is equiv-
alent to a term of the form '+X'
Obversion: Any phrase of the form '-( +X + Y)' is equiv-
alent to a phrase of the form '+(-X - Y)'

Given the reflexivity of the connective '- ... +', we add the
following axiom.

Axiom: Any positive statement whose split formative ex-
pression is such that its first element is negative, its sec-
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ond element is positive and its two terms are identical is
always true

Next, we add our rule for mediate inference.

Syllogism: From any pair of statements such that at least
one has the form '-X + / - Y' derive a statement exactly
like the other except that 'Y' has replaced 'X' at least once

The restrictions on mediate inference, syllogistic, validity
are quite simple and are reflected in our rule. In effect,
such an inference is valid just as long as (i) at least one premise
is equivalent to a statement of the form '-X + / - Y', (ii)
the second premise and conclusion have the same logical
form, and (iii) the conclusion is the algehraic sum of the
premlses.

We conclude now with sorne examples of proofs using our
new system.

Example 1. From 'No P is M' and 'Every S is M' derive 'No S
is P'

1. -P-M
2. -S +M
3. - [+P + M]
4. - [+M +P]
5. -M-P
6. -S-P

premlse
premise
1, Obversion
3, Commutation
4, Obversion
5, 2, Syllogism

Example 2. From 'Every circle is a figure' derive 'Every drawer
of a circle is a drawer of a figure'

1.-C+F
2. - {+D + C} + {+D + C}
3. - {+D + C} + {+D + F}

premlse
Axiom
1,2, Syllogism

Example 3. From 'Every hoy loves sorne girl', 'Every girl adores
sorne cat', 'AH cats are mangey' and 'Whatever adores some-
thing mangey is a fool' derive 'What sorne hoy loves is a fool'
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1. - B1 + {+L12 +~}
2. - Gz + {+A23 + C3}
3. -C +M
4. - {+A23 + M3} + F
5. -G2 + {+A23 +M3}
6. - G +F
7. - B1 + {+L 12 + F2}
8. - {+B1 + L12} + F2

premlse
premise
premise
premise
3,2, Syllogism
4, 5, Syllogism
6, 1, Syllogism
7, Association

Example 4. From 'ff p then q' and 'p' derive 'q'

l. - p + q premise
2. +p premise
3. + q 1, 2, Syllogism

Example 5. From 'ff p then q' and 'Not q' derive 'Not p'
1. -p +q
2. -q
3. -[+p+[-q]]
4. - [+[-q] + p]
5. - [-q] - P
6. -p

premise
premise
1,Obversion
3, Commutation
4, Obversion
5, 2, Syllogism

Example 6. From 'Tul1y is Cicero' derive 'Cicero is Tul1y'

l. * T + C premise
2. + C + T 2, Commutation
(interpreting the wild quantity in 1as particular)

Example 7. From 'TulIy is Cicero' and 'Cicero is Roman' derive
'Tul1y is Roman'

l. * T + C premise
2. * C + R premise
3. * T + R 1,2, Syllogism
(interpreting the wild quantity in 2 as universal)

11. Modero mathematical logic replaced traditional sylIogis-
tic logic about a hundred years ago. This change was rapid
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and thorough. There were several reasons for the demise of the
old syllogistic-some good, sorne bad. Not the least important
of the good reasons was the fact that the new logic has powers of
inference far beyond those of the old. The restricted scope
of traditional syllogistic had been recognized clearly by logi-
cians and philosophers for many centuries. Leibniz was one of
the first, and most important, logicians to attempt to expand and
modify the old syllogistic so that it could deal with the full range
of inferences. He was particularly concerned with three kinds of
inference which were beyond the scope of syllogistic: those in-
volving singular terms, those involving compound sentences,
and those involving relationals. What Leibniz recognized was
that this restriction of power was due to syllogistic's lack of
expressive power. What was required was a uniform, simple,
perspicuous means of expressing all kinds of statements which
enter into inferences. Traditional syllogistic was limited in its
expressive capacity to simple categoricals.Í By contrast, the
new mathematicallogic, initiated primarily by Frege, was able
to give formal expression to a very wide range of expressions, to
provide a relatively simple algorithm for manipulating formal
expressions, and to build a system of reckoning all kinds of
inferences involving such expressions.

The standard system of mathematicallogic has no difficulty
in giving a perspicuous analysis of inferences involving singu-
lars, compound sentences or relationals. But, as we have seen,
the system presented aboye, the full formallanguage, not only
offers perspicuous analyses of such inferences, it does so in a
simple, natural manner using a single uniform algorithm (the
standard mathematicallogic must make do with a proposition-
al or sentential calculus, a predicate calculus and an identity
theory). So our full system seems to match the standard system

7 For a more detailed account of Leibniz's attempt at a full formallan-
guage see [4].
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in inference power. In fact, our system exceeds the entrenched
system in terms of inference power. 8

As there were three kinds of inferences beyond the scope oí
traditional syllogistic, there are three kinds oí inferences be-
yond the scope of today's standard mathematicallogic.

Case 1: Plato taught Aristotle. So Aristotle was taught by
Plato.

This inference is formalized by the standard system as

Tpa
:. Tpa

Where the ordinary speaker and the grammarian see the con-
clusion here as semantically equivalent but syntactically dif-
ferent from the premise, the modem logician is forced to give
both statements the same logical formo The result is a trivial-
ization of the inference involved. Our own system formulates
the argument as

:. * A2 + {+T12 * PI}
This is a simple case of passive transformation, and is accom-
plished in our system by an application of Commutation (twice)
and Association (once). The conclusion and premise may have
the same truth conditions, but they are now clearly seen as for-
mally distinct.

Case II: Socrates taught a teacher of Aristotle. So, one
whom Socrates taught taught Aristotle.

This argument is formalized by the standard system as

(3x)(Tsx . Txa)
:. (3x)(Tsx . Txa)

8 This claim is made (along with examples such as those below) in [27].
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Again, the standard system is powerless to exhibit the formal
difference between the premise and conclusion. In our system
the inference has the form

Grammarians take this to be a case of associative shift. While
the modem logician sees it as a trivial reiteration, our logic rec-
ognizes the formal distinction between premise and conclusion
here. The latter is derived from the former by an application oí
Association.

Case III: Plato taught Aristotle with a dialogue. So Plato
taught Aristotle.

The best that the standard system can do at formalizing this
argument is this

(3x)(Dx . Tpax)
:. Tpa

Here the two relational predicates are distinct--one is a three-
place function, the other is two-place. For the inference to be
valid there must be a hidden assumption of an analytic seman-
tic tie between the two predicates. Our formalization retains a
more natural syntax and the common sen se view that 'taught'
is univocal throughout its two uses in the argumento

:. * PI + { +TI23 * A2}
(It is important not to confuse the subscribed numerals here
with the bound variable of the predicate calculus. Bound vari-
ables simultaneously keep track of reference and the order of
subjects and objects with respect to the interpretation of the
relational predicate. The numerals are needed only for the sec-
ond of these tasks.) Our inference proceeds by the application
of Association and Simplification.
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12. The full fonnallanguage sketched out aboye seems to have
certain important advantages over the standard mathematical
logic. First of all, it is relatively simple. This simplicity is due
in no small measure to its ability to give a uniform represen-
tation for all fonnatives in tenns of the plus and minus signs
of opposition used in mathematics. The resulting simplicity of
expression, like that of mathematics, is dependent in part on
the systematic ambiguity of such oppositional signs (as both
unary and binary connectives). Secondly, the fonnallanguage
is more natural than that of the standard system. This is because
our syntax is built to be as close to that of naturallanguage as
possible. In contrast, the system of logical syntax upon which
the standard logic is based was never motivated by a desire to
preserve natural sentence forms. Indeed, the ear1y authors of
the system rarely refrained from denigrating the syntax of nat-
urallanguage, which was seen as hiding and obscuring a deep-
er logical syntax. Finally, our fulllogic surpasses the standard
logic's ability to perspicuously analyze all kinds of inferences.
Some quite simple inferences, accessible to our unschooled in-
tuitions, are beyond its power.

Any theory which even seems to have important advantages
over an established theory deserves at least a careful examina-
tion by relevant researchers. Our belief is that the full formal
language of pluses and minuses does indeed have important ad-
vantages over today's standard mathematicallogic. Our claim
is that it at least seems to have such advantages.
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RESUMEN

Este artículo consiste en una introducción a los elementos de un
lenguaje formal natural y claro (que por primera vez vislumbró F.
Sommers). Mediante un sencillo algoritmo basado en la suma alge-
braica, este lenguaje se convierte en una importante herramienta con
la fuerza necesaria para desafiar la lógica de predicados estándar.

[Traducción de Gabriela Montes de Oca Y.]
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