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Most of us have learnt to live with the fact that some singular
terms do not denote. It would be fun were it otherwise, but no
jolly fat man at the North Pole brings presents to good chil-
dren at Yuletide; the name “Santa Claus” does not denote. Sets
and classes may first have presented themselves to us as ex-
tensions of predicates, but it seems now the consensus that the
paradoxes of set theory show that not all predicates have sets
as extensions. Ramsey notwithstanding, many agree with the
early Russell, and with Poincaré, in seeing an affinity between
Russell’s paradox and the paradox of the liar. So if the lesson
of the paradoxes of set theory is that a predicate need no more
have a set as extension than the name “Santa Claus” need de-
note someone, then perhaps the lesson of the liar paradox is
that nothing answers to a liar sentence.!

To try this idea out systematically, we want some categories.
Some singular terms denote, and “object” is a general term for
the sort of thing singular terms succeed in denoting. We may
say that there is no object denoted by the name “Santa Claus”.

! Cf. W.D. Hart, “Russell and Ramsey,” Pacific Philosophical Quarter-
ly, 64 (1983), pp. 193-210.



Since “set” has become the favoured term for unproblematic
extensions of predicates, we may say that the predieate “is not
a member of itself” has no set as extension. Moore and Russell,
from whom we inherit the term “proposition”, thought of propo-
sitions as standing to sentences as objects stand to their names
and as sets stand to predicates of which they are extensions. So
the idea we are considering is that no proposition answers to,
or, in another jargon, is expressed by, a liar sentence.

Making sense of this idea should include a good story of the
structure of propositions and an account of why it encompass-
es none expressed by a liar sentence. That is a project Jon
Barwise and John Etchemendy undertake in their book, The
Liar.? One such story of propositions, the simplest Barwise and
Etchemendy consider, they name for Russell. In fact Moore and
Russell took propositions as primitive. But no matter, for the
story Barwise and Etchemendy credit to Russell is one natural
enough to demand consideration whether Russell actually told
it or not.

If a singular term denotes, it denotes an object. If a predi-
cate has an extension, its extension is a set. The simplest sort
of sentence is a subject-predicate sentence got by applying a
predicate to a singular term. A proposition is to be the exten-
sion of a sentence as objects and sets are extensions of sin-
gular terms and predicates. It would be tidy if the extensions
of subject-predicate sentences were somehow composed out of
the extensions of their subjects and predicates. The least de-
manding composition of them that keeps easy track of which is
which is their ordered pair. In this way we arrive at the idea
that the proposition expressed by a subject-predicate proposi-
tion is the ordered pair whose first member is the denotation
of the subject and whose second member is'the extension of

2 Jon Barwise and John Etchemendy, The Liar: An Essay on Truth and
Circularity, Oxford University Press, 1987.
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the predicate. This story has a sweet little by-product, for we
may say that such a proposition is true if and only if its first
member is an element of its second. (But be warned that this
story becomes less appealing as we allow for propositions of
other forms, like negations and quantifications.)

How in this story should we characterize the liar? Here it
might seem most natural to think first of a sentence like “This
sentence is false.” The subject of that sentence is a singular
term that denotes that very sentence itself, and the sentence
says of itself that it is false. But in our present story, truth and
falsity are attributes not so much of sentences as of their ex-
tensions, the propositions they express. So an example of a liar
like “This sentence is false” is ill-cast in our present story of
propositions. These reflections suggest that we begin instead to
characterize the liar from an example like “The proposition ex-
pressed by this sentence is false,” or even “This proposition is
false.” In such examples the subject is a singular term purport-
ing to denote a unique proposition, the proposition expressed
by the sentence, and the sentence says of that proposition that
it is false. In that way the examples can at least attribute falsity
to, or deny truth of, things of the proper sort.

In any such example, a proposition will bear two relations to
a sentence; it will be both denoted by the subject of the sen-
tence and expressed by the sentence. But on the current sto-
ry, the proposition expressed by a subject-predicate sentence
is the ordered pair of the denotation of the subject and the
extension of the predicate. So, since in the present examples
the denotation of the subject is the proposition, expressed by
the sentence, this proposition is an ordered pair that is its own
first member. Indeed on the current story of propositions, we
could define a self-referential subject-predicate proposition as
an ordered pair that is its own first member (and whose second
member is any set).

Wiener and Kuratowski independently taught us ways to
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construe ordered pairs in terms of ordinary sets.? For example,
on Kuratowski’s model, the ordered pair of x and y is the set
whose members are the unit set of x and the set whose members
are x and y. So a self-referential subject-predicate proposition
is a set that is a member of a member of itself. Hence, to char-
acterize the liar in the current story of propositions, we should
cast propositions in a context that permits sets to be members
of members of themselves.

Such a context is, in 1992, unorthodox. The dominant view
of sets nowadays is the iterative conception. George Boolos has
published a masterful exposition of this conception for philoso-
phers.* To review it all too swiftly, we might start from the or-
dinal numbers. These are one way of generalizing the natural
numbers (that is, the non-negative whole numbers, namely, O,
1, 2 and so forth) into the infinite. There are two kinds of natural
numbers. The natural number 0 has no natural number before
it. Any other natural number is of the form k + 1, where k is not
only a natural number before k + 1, but also the natural num-
ber immediately before k + 1. Numbers having not only prede-
cessors but immediate predecessors are called successors, and
we write k + 1 for the successor of k. The least number prin-
ciple, a basic law of natural numbers, says that if there is a
number with a property, then there is a least number with that
property. We hang on to this principle, but suppose that there
is a number, called a transfinite ordinal number, greater than
all natural numbers (now called finite ordinals). Then by the
least number principle, there is a least ordinal greater than all
natural numbers. Call it w. So w has predecessors, but no im-
mediate predecessor, for if k£ were an immediate predecessor
of w, k would be natural and w would be k& + 1, so w would be

3 W.V. Quine, Word and Object, MIT Press, 1960, section 53, pp. 257—
262.

4 George Boolos, “The Iterative Concept of Set,” reprinted in Philoso-
phy of Mathematics: Selected Readings, Benacerraf and Putnam, eds., 2nd
ed., Cambridge University Press, 1983, pp. 503-529.

6



natural. An ordinal like w that has predecessors but no imme-
diate predecessor is called a limit ordinal. (Every limit ordinal
always has a successor, which has a successor, and so on.) We
have to take steps to ensure a large supply of limit ordinals.
Because the ordinals satisfy a least number principle, they
also satisfy inductive principles. So, for example, we can spec-
ify an operation on ordinals by giving its value at O outright,
by giving its value at a sucessor o + 1 in terms of its value
at o, and by giving its value at a limit A in terms of its values
at the predecessors of A. In this way we may define what are
called the ranks. Let rank O be the empty set, the set that has
no members. Let rank o + 1 be the power set of rank «, the
set of all subsets of rank ¢. For any limit A, let rank A be the
union of the ranks § for § less than ), that is, the set of all
things in rank 3 for some [ less than A. Then on the iterative
conception, an object is a (pure) set if and only if it is a member
of rank o for some ordinal . Since any set is a member of rank
o for some ¢, there is by the least number principle a least
such ordinal « called the rank of the set. We can show that for
any sets x and y, if ¥ is a member of v, then the rank of x is less
than the rank of y; as it were, on the iterative conception, a set
is always ‘constructed later than’ its members. It follows that if
there were a sequence x, of sets such that for all n, x,+1 is a
member of x,, then the sequence of ranks of these sets would
be an infinitely descending sequence of ordinals, and, by the
least number principle, there are no infinitely descending se-
quences of ordinals; so there are no such infinitely descending
€-sequences of sets. (If, in particular, there were a set x that is
a member of a y of x, then the sequence with x in odd places and
y in even places would be an infinitely descending €-sequence,
so on the iterative conception of sets no such x and y exist.)
It follows from the fact that there are no infinitely descending
€-sequences that every non-empty set has a member disjoint
from it, and conversely. For if there were such a sequence, the
set of its terms would meet each of its members; and from a
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non-empty set meeting each of its members we could select an
infinitely descending €-chain.

The totality of sets in ranks is called the cumulative hierar-
chy; the tiers in the hierarchy are the ranks, and it is cumu-
lative because when (3 is greater than @, rank « is a subset
of rank . The cumulative hierarchy is nowadays often taken
to be the intended domain of set theory, and that domain with
the membership relation restricted to that domain, to be the
intended, or standard, model of set theory. The principle that
every non-empty set has a member disjoint from it is (a ver-
sion of) what is called the axiom of foundation (or, sometimes,
regularity). We have seen that the cumulative hierarchy sat-
isfies the axiom of foundation. The received formal statement
of axiomatic set theory is called ZF, Z for Ernst Zermelo and
F for Abraham Fraenkel, though by all rights Thoralf Skolem
deserves a mention too. So the conventional wisdom about sets
forbids telling the story above about propositions and the liar.

Actually, the argument we gave above to the effect that our
version of the axiom of foundation (every non-empty set has
a member disjoint from it) rules out infinitely descending €-
chains cannot be formalized in ZF, if ZF is consistent. For sup-
pose ZF is consistent, say, because it comes out true in the
cumulative hierarchy, where there are no infinitely descend-
ing €-chain. Add to the language of ZF an infinity of new con-
stants, one constant a, for each natural number n. Add to ZF
each of the axioms of the form a,+] € a,. Call this new the-
ory ZF* . If, ZF* were inconsistent, there would be a proof of
a contradiction in it. But all proofs are finite, so only finite-
ly many of the axioms of ZF and the new axioms of ZF* can
occur in this proof in ZF* of a contradiction. Let n be large
enough that a1 € ag,...,an+1 € a, includes all the new ax-
ioms of ZF* in this proof. In the cumulative hierarchy let xq
be the empty set and let x4 ) be the unit set of x;. Now let ao,
al,...,an,an+] denote x,41,%,, . ..,%1, %0 in the cumulative
hierarchy. Then all the axioms in this proof come out true so
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interpreted in the cumulative hierarchy. So by the soundness
of logic, the contradiction would have to be true in the hierar-
chy, which is impossible. Hence, by the completeness theorem,
since ZF* is consistent, it has a model; moreover, this model
may be taken to be an expansion of the cumulative hierarchy
with an infinitely descending €-chain. This sort of argument is
due to Leon Henkin.

To tell the story above about propositions and the liar, we
need another, different story of sets. At this juncture, Barwise
and Etchemendy call upon Peter Aczel’s gorgeous survey ex-
position of alternatives to the axiom of foundation.® To illus-
trate the idea, let us use dots —call them nodes— to represent
(pure) sets, and let us use an arrow from a dot for set x to a
dot for set y to represent y being a member of x. (So arrows go
back along membership.) In this way, for example, a dot or node
with no arrows from it shows the empty set, while of two dots
with just one arrow from the first to the second, the first shows
the unit set of the empty set. In this way we can draw pictures
of each of von Neumann’s set theoretic reconstructions of the
natural numbers, and of all the hereditary finite pure sets.

Now let us generalize. Take any old set. This set can come
from anywhere, the cumulative hierarchy or even one of the
realms of non-well-founded sets we are about to describe. Call
the members of this set nodes. To make the set into what we
will call a graph we add to it any old binary relation on it. For
a binary relation on a set is a set of ordered pairs of members
of it, and we will picture such an ordered pair as an arrow from
its first member to its second. So a graph is a set of nodes and
arrows between them. A pointed graph is a pair consisting of
a graph and one of its nodes, which is called the point of the
pointed graph. (So there are n ways to make a graph with n

5 Peter Aczel, Non-well-founded Sets, CSLI lecture notes no. 14, Center
for Study of Language and Information, Stanford, 1988. The next eleven
paragraphs draw heavily on Aczel’s exposition.



nodes into a pointed graph.) A path in a graph is any sequence
of its arrows that fit together head to tail; more abstractly put,
it is a sequence p; of pairs in the relation on the nodes such
that for each i, the second member of p; is the first member of
Pi+1- An accessible pointed graph is a pointed graph in which
for each node, there is a path from the point to the node (so
such a path is a finite sequence of pairs of which the point is
the first member of the first pair, and the given node is the
second member of the last pair.)

When in a graph there is an arrow from a node n to a node
m, let us say that m is a child of n. A decoration of a graph is
a function that assigns sets to the nodes of the graph in such a
way that the elements of a set assigned to a node are the sets
assigned to the children of the node. Equivalently, if we write

n—m

to mean that m is a child of n, then d is a decoration of a graph
G if and only if for each node n of G,

d(n) = {d(m)|n — m}

Note that decorations need not to be one-to-one; that is, they
may assign the same set to several nodes. An accessible pointed
graph is a picture of a set if and only if there is a decoration of
the graph that assigns the set to the point of the graph.

Let us say that a path in a graph stops if and only if it is (a
sequence of) finite (length) and, where n is the second term of
the last pair in the path, n has no children. A graph is well-
Jfounded if and only if every path in it stops. This rules out both
infinitely long paths and paths that loop back into themselves.
Observe that every set in the cumulative hierarchy has a picture
that is a well-founded accessible pointed graph. (For if x is the
set, let the nodes be the members of the transitive closure of
{x}, and let an arrow go from a node y to a node z if and only
if z is a member of y. Any such picture is finitely deep, by
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the axiom of foundation; pictures of infinite sets are infinitely
wide.) Conversely, any well-founded accessible pointed graph
is a picture of a (unique) set in the cumulative hierarchy. (For
to decorate such a graph we must assign to childless nodes the
empty set, and to a node with children we must assign the set
of sets assigned to its children.)

But well-founded graphs are pretty special, and maybe it is
narrow-minded to think that only these among accessible point-
ed graphs picture sets. Perhaps every accessible pointed graph
pictures a set. Suppose so. Then, for example, the graph con-
sisting of a single node from which an arrow starts and ends
pictures a set that is its own unit set. Observe too that though
self-membership and non-self-membership occur, logic guar-
antees that no ¢:iph has a node whose children are all and
only the nodes that are not children of themselves. More to the
present purpose, recall that the proposition that Socrates is bald
was to be the ordered pair of Socrates and the extension of the
predicate “is bald”. Letting “F” substitute for any predicate
with an extension, a proposition that says of itself that it is F
was to be an ordered pair that is its own first member and whose
second member is the set of F's. Let H be an accessible pointed
graph picturing the set of F's. Let G be an accessible point-
ed graph from whose point p descend two arrows, one to each
of two nodes n and m; let an arrow go from n to p, and from m
let one arrow go to p and another to the point of H. Then G is
a picture of a proposition that says of itself that it is F'. Simple,
isn’t it?

But there is a glitch. The axiom of extensionality says that
sets with the same members are identical. This axiom is as re-
ceived as axioms of set theory get. The glitch is not that non-
well-founded sets force us to deny extensionality, which would
put us beyond the pale. To remain within, we must decorate
nodes with the same children with the same set, and this we
insist upon. But in the cumulative hierarchy of pure sets, ex-
tensionality suffices to fix the identities of sets. For it fixes the
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uniqueness of the empty set outright, and progressing up the hi-
erarchy extensionality fixes the identities of sets of higher rank
inductively by the identities of their members. In an applied
hierarchy that began not from the empty set but from some set
of individuals or urelements, we might have other principles
for the identities of those individuals, and then those princi-
ples with extensionality would fix the identities of all the sets
in the applied hierarchy inductively too. But where a set is its
own unit set, there is no fixing the identity of the set’s member
before (at a lower rank than) that of the set itself. So induc-
tive structure, like extensionality, from members of sets to sets
seems insufficient to fix the identities of non-well-founded sets.
In this way, non-well-founded sets are a significant departure
from the conventional wisdom about sets.

Aczel has the grace and good taste to devote the lion’s share
of his monograph to the issue of the identities of non-well-
founded sets. (Barwise and Etchemendy do not acknowledge
the issue in their book.) To focus the issue, let ZF~ be a for-
malization of the usual axioms of Zermelo-Fraenkel set theo-
ry (with choice but) without the axiom of foundation. To ZF~
we will consider adding various principles all of which agree
that every accessible pointed graph pictures a set but which
disagree with each other about how the identities of non-well-
founded sets pictured by non-well-founded such graphs come
out. For a considerable range of such principles, Aczel shows
that if ZF is consistent, then so is the corresponding exten-
sion of ZF~. The basic idea of such relative consistency proofs
is straight-forward. We make graphs from nodes that are sets
in the cumulative hierarchy, and then we replace (or, in the
jargon, identify) perhaps non-well-founded sets with equiva-
lence classes of their graphs, where the underlying equivalence
relation encodes one of the several principles about when
non-well-founded sets are identical, that is, when different non-
well-founded graphs picture the same set. (Actually, the equiv-
alence classes are too big to be sets, so we cut each down to
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the set of such graphs of lowest rank.) Each of these worlds
includes (isomorphs of) all the well-founded-sets of the cumu-
lative hierarchy plus a treasury on non-well-founded sets, dif-
ferent treasuries reflecting different ways of counting such sets.
Aczel shows us that we have an embarrasing freedom in how we
can count such sets.

Suppose, at one extreme, that we want to maximize differ-
ences (minimize identities) between sets. There is a limit here.
A graph is extensional if and only if nodes with the same chil-
dren are identical. A decoration of a graph is exact if and only if
it is one-one, that is, it assigns different sets to different nodes.
By the axiom of extensionality, only extensional graphs have
exact decorations. (For if a graph is not extensional, two dif-
ferent nodes in it have the same children. An exact decoration
would assign these nodes different sets. But each must be dec-
orated with the set of decorations of its children, so since they
have the same children, they must be decorated with the same
set.) Exact decorations draw distinctions, so the most we could
do to maximize differences would be to insist that each exten-
sional graph has an exact decoration. Aczel credits this princi-
ple to Boffa in the 1970s. (Actually, Boffa’s axiom is somewhat
stronger, and much more complex, than this principle.) To il-
lustrate, take any set of nodes, and from each node draw a single
arrow circling back to that node. This graph is extensional, so
by the principle it has an exact decoration. In effect, we get
as many non-well-founded sets that are their own unit sets as
there are sets in the cumulative hierarchy, which is a lot.

Now suppose we want, at another extreme, to maximize iden-
tities (minimize differences) between sets. To do so, we might
suppose that every graph has a unique decoration. (This is the
alternative to the axiom of foundation with which Aczel leads
off, and the only one Barwise and Etchemendy state. It seems to
have been stated first by Forti and Honsell in the early 1980s.)
A graph with a single node and a single arrow from that node
looping back to it still guarantees the existence of a set that is
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its own singleton. But if there were two such sets, they would
provide two different ways to decorate this graph, so now there
is exactly one set that is its own singleton. Aczel calls this set §2.
An accessible pointed graph is a picture of § if and only if every
node in the graph has a child. For €2 suffices to decorate such
a graph, and in any picture of € every node must have a child.
So on this alternative to foundation, the infinitely descending
accessible pointed graph consisting of nodes ng, n, . . . and ar-
rows just from ny to n+ is also a picture of €2, albeit inexact,
while on Boffa’s alternative, it takes infinitely many sets to dec-
orate this graph.

There are intermediates between these two extremes. It is
easy to convert any decoration of a graph into a decoration of
another graph isomorphic to the first. Perhaps one might want
to say that if accessible pointed graphs are isomorphic, then the
sets they picture are identical. But we must resist the converse.
Let G be a graph with one node and one arrow from it looping
back to it. Let H be a graph with two nodes, one arrow from
the first to the second, and another from the second looping
back to it. G and H are not isomorphic. If nodes of a graph
have the same children, they must be decorated with the same
set, so since the two nodes of H have the same children, they
must get the same decoration. The lower node of H has to be
decorated with a set that is its own singleton, which is also the
sort of set that has to be used to decorate G. So G and H picture
the same sets, even though they are not isomorphic. At this
point Aczel modifies an idea of Paul Finsler’s from the 1920s to
get a necessary and sufficient condition for accessible pointed
graphs to picture the same set. Let G be an accessible point-
ed graph with point a. Let G* be the accessible pointed graph
with the nodes and arrows of G on paths starting from children
of a, together with a new node and an arrow from this node to
each child of a. (Note that if a does not lie on a path starting
from one of its children, then G is isomorphic to G*, but if a
does lie on such a path, then G* is G plus the new nodes and
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arrows.) Aczel’s modification of Finsler’s idea is that G and H
picture the same set if and only if G* is isomorphic to H*. Let
us postpone showing how this differs from Forti’s and Honsell’s
idea.

Yet another idea comes from Dana Scott in 1960. A tree is
an accessible pointed graph in which for each node there is
a unique path from the point to the node. We sketched above
a way to draw for each set a picture of it; Aczel calls this the
cannonical picture of the set. The cannonical picture of a set
is not in general a tree; it will fail to be a tree if, for example,
two members of the set meet. But every picture of a set can be
unfolded, as Aczel puts it, into a tree picture of the same set.
Let G be an accessible pointed graph with a point a. Form the
tree whose nodes are all the paths through G starting from a,
and whose arrows go from, and only from, a path of the form
a — -+ — aytoapathofthe forma — -+ — a, — a,4] (so
arrows go from paths to their immediate extensions). The point,
or root, of this tree is the path a of length 1. (Counting a alone
as a path in G is an extension of our earlier use of “path”.) Any
decoration d of G induces a decoration D of the tree, for if the
patha — --- — b is anode of the tree,let D(a — --- — b) be
d(b). So the unfolding of an accessible pointed graph pictures
any set pictured by the graph. Aczel calls the unfolding of the
cannonical tree picture of a set the cannonical tree picture of
the set; the cannonical picture is always exact, but the can-
nonical picture is usually not. To illustrate, the unfolding of a
graph with one node and one arrow from it looping back to it is
isomorphic to the graph with nodes ng, n1, . . . and arrows from
nj to ng41. For any accessible pointed graph G, let G be the
unfolding of G into a tree. Scott’s idea can be put by saying that
accessible pointed graphs G and H picture the same set if and
only if G* is isomorphic to H*.

The next order of business is to see that these ideas differ
extensionally. To show this, let G be
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Let Ga be G with point a, let Gb be G with point b, and let
Gc be G with point ¢. On Forti’s and Honsell’s idea, the unique
decoration of G assigns {2 to every node, since each node has a
child. Next, the unfolding of Ga looks like

The unfoldings of Gb and Gc are isomorphic subtrees of
(Ga)*. So on Scott’s idea, G pictures a setx (for b and ¢ both) and
asety (for a) such thatx # y,x = {x,y} andy = {x}. Next
it is not difficult to check that no two of (Ga)*, (Gb)* and (G¢)*
are isomorphic, so on Finsler’s idea, G pictures three pairwise
different sets x,y and z such that x = {z},y = {x,z} and
z = {x,y}. Finally, consider two nodes each with a single ar-
row back to it. Boffa says this is a picture of two sets, but Forti,
Honsell, Finsler and Scott all say it is an inexact picture of
one set. So any two of our four alternatives to foundation are
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inconsistent with each other. In general, Boffa makes the most
distinctions, Finsler, the next most, Scott, fewer still, and Forti
and Honsell, fewest.

Aczel shows us a wealth of criteria of identity for non-well-
founded sets. Indeed, that wealth may be an embarrasment of
riches, perhaps counterfeit. For, to cite a precept Quine men-
tions, no entity without identity.® So if we have no basis for
choice among competing criteria of identity for non-well-
founded sets, then, perhaps, we do not know what such sets
are, or would be if there were any. Perhaps we do not under-
stand what Aczel (and Barwise and Etchemendy) are talking
about well enough to decide sensibly whether to go along or
stay home.

The jargon “criteria of identity” should be used circumspect-
ly. To be sure, the number of F's is the number of Gs if and only
if there is a one-to-one correspondence between the F's and the
Gs, and well-founded sets are identical if and only if they have
the same members. But this contrast does not show that identity
is a patchwork, that it is one thing for numbers but another for
well-founded sets, as perhaps pumps are one thing in shifting
fluids but another on women’s feet. Everything is what it is and
not another thing, as Bishop Butler put it. Identity is identity,
the smallest reflexive relation, as Warren Ingber’ once put it.
It is just that for some kinds of things, like numbers of F's and
well-founded sets, identity is co-extensive with (another, in in-
tension) relation between things of that kind, and mastery of
such an equivalence is central to grasp of the kind.

To illustrate, in the good old days we were taught in school
that two points determine a straight line and that three non-
collinear points determine a plane. These facts can be put as

6 W.V. Quine, “Speaking of Objects,” reprinted in Ontological Relativ-
ity and Other Essays, Columbia University Press, 1969, p. 23.

7 Once a graduate student in philosophy at the University of Michigan,
and now a lawyer.
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criteria of identity. Straight lines are identical if and only if
there are two different points that lie on the lines. Flat planes
are identical if and only if there are three different points on
the planes such that no line passes through all three points. We
can generalize these criteria on both dimensional sides. Points
are identical if and only if there is one point lying on the points,
and n + 1 dimensional hyperplanes are identical if and only if
there are n + 2 different points on the planes and no two com-
binations of n + 1 of these points determine the same n dimen-
sional hyperplane. There is, of course, a legitimate question for
each of these criteria whether it (and especially the last, induc-
tive, generalization) is true, and it would utterly misconstrue
these questions to take these criteria as an infinity of separate
clauses in an unsurveyable ‘definition’ of identity. Besides, the
value, such as it is, of these criteria is what they reveal via a
prior grasp of identity about straight lines, flat planes and the
cross-dimensional affinity between straightness and flatness.
Quine’s mention of the precept “No entity without identity”
differs from our use of it. He meant that because we have no
clear criteria of identity for properties or propositions, we do not
know what talk about such things is about. Our worry was that
because we have, in contrast, four mutually inconsistent crite-
ria of identity for non-well-founded sets, and no evident basis
for picking a winner from them, we do not know what talk about
such sets is about; criteria of identity for a single kind should
be extensionally equivalent for there to be an extension, a kind.
But maybe we can come up with the right choice. Two
thoughts might strike one here. First, among the more familiar
sets of the cumulative hierarchy, it is the axiom of foundation
that says that for only the well-founded graphs do there exist
decorations, while it is the axiom of extensionality that says
these decorations are unique. So if we are to drop foundation
but keep extensionality, then since in the well-founded case,
extensionality is uniqueness of decoration, perhaps uniqueness
of decoration is the right way to lift extensionality into non-
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well-founded sets. Such considerations would favour Forti’s and
Honsell’s axiom, and might account for Barwise’s and Etche-
mendy’s silent selection. Conservative systematicity makes
sense, for surely it would be wasteful and less organized to flee
what has served us well needlessly. But conservatism will not
be the whole story if we are to abandon the foundation of our
fore-fathers, and it seems sensible to direct our departure by
our motives for leaving. We wanted to represent self-referential
propositions set theoretically, and it might feel like manifest
destiny to fathom a unique criterion of identity for non-well-
founded sets in just that motive for departure. Thus the sec-
ond thought that might here strike one is the question what,
if anything, self-referential propositions have to say about the
identity condition of non-well-founded sets.

So we might ask intuition whether self-referential subject-
predicate propositions with a common predicate, like

This proposition is expressed in seven words

and
This proposition is expressed in seven words,

are the same or different. But intuition dithers. Perhaps it
sketches two copies of a pointed graph with four nodes; in each
there is an arrow from the point, node 1, to nodes 2 and 3, an
arrow from each of nodes 2 and 3 to 1, and from 3 an arrow to the
point of a picture of the set of all propositions expressed in sev-
en words. Perhaps Finsler’s and Scott’s ideas seem too unmo-
tivated to intuition, and it discards them. But the extremes re-
main. Will intuition say with Forti and Honsell that each graph
has a unique decoration so they picture the same proposition, or
will it say with Boffa that their joint graph overlapping just in its
subpicture of the set of propositions expressed in seven words
has an exact decoration, so they picture different propositions?
Intuition leaves us in metaphysical suspense.

Confronted with this irreality, one might reflect that our only
access to propositions is through sentences expressing them
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and that demonstration of sentence types is deferred® from their
tokens, so perhaps we would do better to compare
The proposition expressed by the sentence demonstrated by
this token is expressed in fifteen words
with
The proposition expressed by the sentence demonstrated by
this token is expressed in fifteen words,
or to compare
(1) The proposition expressed by sentence (1) is expressed in elev-
en words
with
(2) The proposition expressed by sentence (2) is expressed in elev-
en words.
But different tokens of the same demonstrative sentence type
might or might not express the same proposition, and what is
to settle whether (1) is (2) or not? We are left hanging. Could
any of these pairs differ from each other in truth value? Yes,
perhaps, if it is a pair of two different propositions, but no, if
not. Intuition is dumb.

It might seem frustrating to close so aporetically, but a recog-
nition of loss is a gain. Perhaps, as Quine has long urged, it
is in the nature of propositions to elude a lucid grasp. So far,
at any rate, propositions and non-well-founded sets seem well
matched in obscurity.?

Recibido: 9 de marso de 1992

8 W.V. Quine, “Ontological Relativity,” reprinted in Ontological Rela-
tivity and Other Essays, Columbia University Press, 1969, pp. 40 fI.

9 My opportunity to think about non-well-founded sets arose from Ratil
Orayen’s generous invitation to lecture on the subject at the Instituto de
Investigaciones Filoséficas at UNAM in September 1991. I am indebted
to Professor Orayen and his colleagues and students for a wonderful and
stimulating visit to Mexico.
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RESUMEN

En The Liar, Barwise y Etchemendy proponen una construccién de
las proposiciones de acuerdo con la cual la propoesicién expresada
por una oraci6n de la forma sujeto-predicado es el par ordenado cuyo
primer miembro es la denotacién del sujeto y cuyo segundo miembro
es la extensi6n del predicado. Aplicado a oraciones autorreferencia-
les como “la proposici6n expresada por esta oraci6n es falsa”, esto
conduce a un par ordenado que es a la vez el primer miembro de
dicho par. Dada la explicaci6n habitual de los pares ordenados, esto
conduce a un conjunto que es miembro de sf mismo. Tales conjuntos
no son aceptados por las teorfas corrientes, inspiradas en el enfoque
iterativo de los conjuntos, que el autor describe sintéticamente. Pero
hay un enfoque alternativo que sf acepta la existencia de conjuntos
como el antes mencionado. El autor sintetiza las ideas fundamenta-
les de esta teorfa alternativa, expuesta en Non-well Founded Sets, de
Aczel. Se muestra luego que la mera extensionalidad no basta para
fijar la identidad de los conjuntos no-bien-fundados y que ademés
existe una amplia variedad de alternativas para completar un criterio
de identidad. Se argumenta que no hay razones firmes para preferir
una de estas alternativas. Una comparacién con las proposiciones
muestra algo similar y el autor finaliza sugiriendo que las propo-
siciones y los conjuntos no-bien-fundados adolecen de oscuridades
paralelas.

[Rail Orayen]
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