Lagunas expresivas en la demostración euclidiana

Main Article Content

José Seoane
https://orcid.org/0000-0002-9571-3139

Abstract

Some proofs presented by Euclid in his Elements can be called polymodal (Seoane 2022). This characterization is based on an expressive feature: such proofs combine two communication formats, a detailed format and a summary format. Don Fallis draws attention to different classes of “gaps” in mathematical proof; one of them consists of “enthymematic gaps” (Fallis 2003). Its definition seems to point to the same phenomenon captured (in the case in question) by the idea of a summary format of the Euclidean polymodal proof. However, basic methodological differences with Fallis lead me to propose, in order to capture this case, an alternative notion, which I call “summary expressive gap (without structural cost)”.

Downloads

Download data is not yet available.

Article Details

How to Cite
Seoane, J. (2025). Lagunas expresivas en la demostración euclidiana. Crítica. Revista Hispanoamericana De Filosofía, 57(170), 33–63. https://doi.org/10.22201/iifs.18704905e.2025.1695

PLUMX Metrics

References

Andersen, Line Edslev, 2020, “Acceptable Gaps in Mathematical Proofs”, Synthese, no. 197, pp. 233–247. (https://doi.org/10.1007/s11229-018-1778-8)

Anglin, Wiliam Sherron, 1991, “Mathematics and Value”, Philosophia Mathematica, vol. s2–6, no. 2, pp. 145–173. (https://doi.org/10.1093/philmat/s2-6.2.145)

Böehne, Sebastian, 2019, Different Degrees of Formality An Introduction to the Concept and a Demonstration of its Usefulness, tesis doctoral (Doctor Rerum Naturalium in Theoretical Computer Science), Universitat Potsdam, Potsdam, 17 de enero.

Chateaubriand, Oswaldo, 2005, Logical Forms, Part II — Logic, Language, and Knowledge, Centro de Lógica, Epistemologia e História da Ciência, Campinas.

Descartes, René, 1998, Regule ad directionem ingenii —Rules for the Direction of the Natural Intelligence, ed. y trad. George Heffernan, Rodopi, Amsterdam/Atlanta.

Descartes, René, 1996, Reglas para la dirección del espíritu, trad. Juan Manuel Navarro Cordón, Alianza Editorial, Madrid.

Dieudonné, Jean, 1992, “The Concept of ‘Rigorous Proof’ ”, Mathematics — The Music of Reason, Springer-Verlag, Berlín, pp. 235–238.

Euclides, 1991, Elementos (Libros I–IV), trad. María Luisa Puertas Castaños, Gredos, Madrid.

Euclides [Euclid], 1956, The Thirteen Books of the Elements, trad. Thomas Little Heath, Dover, Nueva York.

Fallis, Don, 2003, “Intentional Gaps in Mathematical Proofs”, Synthese, vol. 134, pp. 45–69. (https://doi.org/10.1023/A:1022131513275)

Frege, Gottlob, 1972, Conceptografía/Los fundamentos de la aritmética/Otros estudios filosóficos, trad. Hugo Padilla, Instituto de Investigaciones Filosóficas-UNAM, México.

Giaquinto, Marcus, 2008, “Visualizing in Mathematics”, en Mancosu 2008, pp. 22–42.

Gödel, Kurt, 1992, On Formally Undecidable Propositions of Principia Mathematica and Related Systems, trad. B. Meltzer, Dover Publications, Nueva York.

Hamami, Yacin, 2014, “Mathematical Rigor, Proof Gap and the Validity of Mathematical Inference”, Philosophia Scientiæ, vol. 18, no. 1, pp. 7–26. (https://doi.org/10.4000/philosophiascientiae.908)

Kitcher, Philip, 1981, “Mathematical Rigor—Who Needs It?”, Noûs, vol. 15, no. 4, pp. 469–493. (https://doi.org/10.2307/2214848)

Lamport, Leslie, 2012, “How to Write a 21st Century Proof”, Journal of Fixed Point Theory Applications, vol. 11, pp. 43–63. (https://doi.org/10.1007/s11784-012-0071-6)

Lassalle Casanave, Abel, 2008, “Entre la retórica y la dialéctica”, Manuscrito, vol. 31, no. 1, pp. 11–18.

Leibniz, Gottfried Wilhelm, 1983, Nuevos ensayos sobre el entendimiento humano, ed. Javier Echeverría Ezponda, Editora Nacional, Madrid.

Mancosu, Paolo (comp.), 2008, The Philosophy of Mathematical Practice, Oxford University Press, Oxford.

Netz, Reviel, 1999, The Shaping of Deduction in Greek Mathematics, Cambridge University Press, Cambridge.

Paseau, Alexander Christopher, 2016, “What’s the Point of Complete Rigour?”, Mind, vol. 125, no. 497, pp. 177–207.(https://doi.org/10.1093/mind/fzv140)

Pólya, George, 2004, How To Solve It. A New Aspect of Mathematical Method, Princeton University Press, Princeton.

Robinson, J.A., 2000, “Proof = Guarantee + Explanation”, en Stefen Hölldobler (comp.), Intellectis and Computational Logic. Papers in Honor of Wolfgang Bibel, Kluwer, Dordrecht, pp. 277–294. (https://doi.org/10.1007/978-94-015-9383-0)

Seoane, José, 2025, “Estilo polimodal en Euclides: casos límite y casos estándar”, Tópicos. Revista de Filosofía de Santa Fe, no. 47, e0119.(http://doi.org/10.14409/topicos.2025.47.e0119)

Seoane, José, 2022, “Estilo polimodal en la demostración euclidiana”, Diánoia, vol. 67, no. 89, pp. 39–65. (http://doi.org/10.22201/iifs.18704913e.2022.89.1903)

Tanswell, Fenner, 2015, “A Problem with the Dependence of Informal Proofs on Formal Proofs”, Philosophia Mathematica, vol. 23, no. 3,

pp. 295–310. (https://doi.org/10.1093/philmat/nkv008)

Thiele, Ruediger y Larry Wos, 2002, “Hilbert’s Twenty-Fourth Problem”, Journal of Automated Reasoning, vol. 29, no. 1, pp. 67–89.

Weaver, George, 1988, “Reading Proofs with Understanding”, Theoria, vol. 54, no. 1, pp. 31–47. (https://doi.org/10.1111/j.1755-2567.1988.tb00711.x)