La interpretación modal-hamiltoniana y la naturaleza relacional del tiempo

Contenido principal del artículo

Matías Pasqualini
Sebastian Fortin

Resumen

La interpretación modal-hamiltoniana fue introducida para resolver ciertos problemas de interpretación vinculados a su ontología y a la medición cuántica. Su regla de actualización establece que todo sistema cerrado tiene su energía bien definida, y debido a la indeterminación entre la energía y el tiempo esto plantea un interrogante respecto a la situación temporal de estos sistemas. En este trabajo se analiza el problema del tiempo en sistemas cerrados y se propone la reconstrucción de un tiempo relacional compatible con la perspectiva holista.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Pasqualini, M., & Fortin, S. (2022). La interpretación modal-hamiltoniana y la naturaleza relacional del tiempo. Crítica. Revista Hispanoamericana De Filosofía, 54(161), 3–42. https://doi.org/10.22201/iifs.18704905e.2022.1320

Métricas de PLUMX

Citas

Ardenghi J.S., O. Lombardi y M. Narvaja, 2013, “Modal Interpretations and Consecutive Measurements”, en V. Karakostas y D. Dieks (eds.), EPSA11 Perspectives and Foundational Problems in Philosophy of Science. The European Philosophy of Science Association Proceedings, vol. 2, Springer, pp. 207–217. (https://doi.org/10.1007/978-3-319-01306-0_17)

Ardenghi, J.S. y O. Lombardi, 2012, “Interpretación modal-hamiltoniana: una versión invariante ante las transformaciones de Galileo”, en Cibelle Celestino Silva y Luis Salvatico (eds.), Filosofia e história da ciência no Cone Sul: seleção de trabalhos do 7o Encontro da AFHIC, Entrementes Editorial, Porto Alegre, pp. 222–230.

Ardenghi, J.S., M. Castagnino y O. Lombardi, 2009, “Quantum Mechanics: Modal Interpretation and Galilean Transformations”, Foundations of Physics, vol. 39, pp. 1023–1045.

Baierlein, R.F., D.H. Sharp y J.A. Wheeler, 1962, “Three-Dimensional Geometry as Carrier of Information about Time”, Phys. Rev., vol. 126, no. 5, p. 1864.

Ballentine, L., 1998, Quantum Mechanics: A Modern Development, World Scientific, Singapore.

Barbour, J., 1999, The End of Time: The Next Revolution in Physics, Oxford University Press, Oxford.

Barbour, J., 1982, “Relational Concepts of Space and Time”, The British Journal for the Philosophy of Science, vol. 33, no. 3, pp. 251–274.

Barbour, J.B. y B. Bertotti, 1982, “Mach’s Principle and the Structure of Dynamical Theories”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 382, no. 1783, pp. 295–306.

Busch, P., 2008, “The Time–Energy Uncertainty Relation”, en J. Muga, R.S. Mayato, Í. Egusquiza (eds.), Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, Springer, Berlin, Heidelberg.

Busch, P., 1990a, “On the Energy-Time Uncertainty Relation. Part I: Dynamical Time and Time Indeterminacy”, Foundations of Physics, vol. 20, pp. 1–32.

Busch, P., 1990b, “On the Energy-Time Uncertainty Relation. Part II: Pragmatic Time Versus Energy Indeterminacy”, Foundations of Physics, vol. 20, pp. 33–43.

Castagnino, M. y O. Lombardi, 2008, “The Role of the Hamiltonian in the Interpretation of Quantum Mechanics”, Journal of Physics. Conferences Series, vol. 128, 012014.

Da Costa, N. y O. Lombardi, 2014, “Quantum Mechanics: Ontology without Individuals”, Foundations of Physics, vol. 44, pp. 1246–1257.

Da Costa, N., O. Lombardi y M. Lastiri, 2013, “A Modal Ontology of Properties for Quantum Mechanics”, Synthese, vol. 190, pp. 3671–3693.

Earman, J., 2015, “Some Puzzles and Unresolved Issues about Quantum Entanglement”, Erkenntnis, vol. 80, pp. 303–337. (https://doi.org/10.1007/s10670-014-9627-8)

Fortin, S. y C. López, 2016, “Problemas ontológicos de la mecánica cuántica”, en C.E. Vanney, I. Silva y J.F. Franck (eds.), Diccionario Interdisciplinar Austral. (http://dia.austral.edu.ar/Problemas_ontológicos_de_la_mecánica_cuántica)

Haag, R., 1993, “Local Quantum Physics and Models”, Commun. Math. Phys., vol. 155, pp. 199–204.

Horn, L.R., 2018, “Contradiction”, en E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. (https://plato.stanford.edu/archives/win2018/entries/contradiction/)

Kuchaˇr, K., 2011, “Time and Interpretations of Quantum Gravity”, International Journal of Modern Physics, vol. 20, supp 01, pp. 3–86.

Lombardi, O., 2000, El problema del determinismo en física (tesis doctoral).

Lombardi, O. y D. Dieks, 2021, “Modal Interpretations of Quantum Mechanics”, en E.N. Zalta (ed.), The Stanford Encyclopedia of Philosophy.
(https://plato.stanford.edu/entries/qm-modal/)

Lombardi, O. y S. Fortin, 2015, “The Role of Symmetry in the Interpretation of Quantum Mechanics”, Electronic Journal of Theoretical Physics, vol. 12, pp. 255–272.

Lombardi, O., J.S. Ardenghi, S. Fortin y M. Castagnino, 2011, “Compatibility between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics”, Philosophy of Science, vol. 78, pp. 1024–1036.

Lombardi, O., M. Castagnino, y J.S. Ardenghi, 2010, “The Modal-Hamiltonian Interpretation and the Galilean Covariance of Quantum Mechanics”, Studies in History and Philosophy of Modern Physics, vol. 41, pp. 93–103.

Lombardi, O., S. Fortin, J. Ardenghi y M. Castagnino, 2010, Introduction to the Modal-Hamiltonian Interpretation of Quantum Mechanics, Nova Science Publishers Inc., Nueva York.

Lombardi, O. y M. Castagnino, 2008, “A Modal-Hamiltonian Interpretation of Quantum Mechanics”, Studies in History and Philosophy of Modern Physics, vol. 39, pp. 380–443.

Maudlin, T., 2019, Philosophy of Physics, Princeton University Press, Princeton.

Menzel, C., 2020, “In Defense of the Possibilism-Actualism Distinction”, Philos Stud, vol. 177, pp. 1971–1997. (https://doi.org/10.1007/s11098-019-01294-0)

Okon, E. y D. Sudarsky, 2016, “Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere”, Foundations of Physics, vol. 46, pp. 852–879.

Pooley, O. y H. Brown, 2002, “Relationalism Rehabilitated? I: Classical Mechanics”, The British Journal for the Philosophy of Science, vol. 53, no. 2, pp. 183–204.

van Fraassen, B.C., 1972, “A Formal Approach to the Philosophy of Science”, en R. Colodny (ed.), Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, University of Pittsburgh Press, Pittsburgh, pp. 303–366.

Vanni, L. y R. Laura, 2005, “Mediciones cuánticas sin colapso de la función de onda”, Anales AFA, vol. 17, no. 1, pp. 25–27.
(https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/144)

Vermaas, P., 1999, A Philosopher’s Understanding of Quantum Mechanics, Cambridge University Press, Cambridge.

von Neumann, J., 1932, Mathematische Grundlagen der Quantenmechanik, Springer, Berlín.